搜索
题目内容
设0<a<1,给出下面四个不等式:①
;②
.其中不成立的有
[ ]
A.0个
B.1个
C.2个
D.3个
试题答案
相关练习册答案
答案:C
提示:
由0<a<1知
,故①成立,④不成立,∵
,∴②成立.而
,故③不成立.
练习册系列答案
七彩题卡口算应用一点通系列答案
课堂导学案湖南教育出版社系列答案
轻巧夺A学业水平测试系列答案
好学生小学口算题卡系列答案
远航教育口算题卡系列答案
扬帆文化100分培优智能优选卷系列答案
多维互动提优课堂系列答案
全效学习衔接教材系列答案
巩固与提高郑州大学出版社系列答案
金太阳导学测评系列答案
相关题目
函数
f(x)=
1-x
ax
+lnx
是[1,+∞)上的增函数.
(Ⅰ)求正实数a的取值范围;
(Ⅱ)若函数g(x)=x
2
+2x,在使g(x)≥M对定义域内的任意x值恒成立的所有常数M中,我们把M的最大值M=-1叫做f(x)=x
2
+2x的下确界,若函数
f(x)=
1-x
ax
+lnx
的定义域为[1,+∞),根据所给函数g(x)的下确界的定义,求出当a=1时函数f(x)的下确界.
(Ⅲ)设b>0,a>1,求证:
ln
a+b
b
>
1
a+b
.
(2013•崇明县二模)已知椭圆C的方程为
x
2
a
2
+
y
2
2
= 1
(a>0),其焦点在x轴上,点Q
(
2
2
,
7
2
)
为椭圆上一点.
(1)求该椭圆的标准方程;
(2)设动点P(x
0
,y
0
)满足
OP
=
OM
+2
ON
,其中M、N是椭圆C上的点,直线OM与ON的斜率之积为
-
1
2
,求证:
x
2
0
+2
y
2
0
为定值;
(3)在(2)的条件下探究:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.
定义:设函数y=f(x)在(a,b)内可导,f'(x)为f(x)的导数,f''(x)为f'(x)的导数即f(x)的二阶导数,若函数y=f(x) 在(a,b)内的二阶导数恒大于等于0,则称函数y=f(x)是(a,b)内的下凸函数(有时亦称为凹函数).已知函数f(x)=xlnx
(1)证明函数f(x)=xlnx是定义域内的下凸函数,并在所给直角坐标系中画出函数f(x)=xlnx的图象;
(2)对?x
1
,x
2
∈R
+
,根据所画下凸函数f(x)=xlnx图象特征指出x
1
lnx
1
+x
2
lnx
2
≥(x
1
+x
2
)[ln(x
1
+x
2
)-ln2]与x
1
lnx
1
+x
2
lnx
2
≥(x
1
+x
2
)[ln(x
1
+x
2
)-ln2]的大小关系;
(3)当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+…+N(2
n
),若
2
n
i=1
x
i
=1
,证明:
2
n
i=1
x
i
ln
x
i
≥-ln
2
n
ln
1
3S(n)-2
(i,n∈N
*
).
设函数f(x)=2ax-bx
2
+lnx.给出下列条件,条件A:f(x)在x=1 和x=
1
2
处取得极值;条件B:b=a
(Ⅰ)在A条件下,求出实数a,b的值;
(Ⅱ) 在A条件下,对于在[
1
e
,3
]上的任意x
0
,不等式f(x
0
)-c≤0恒成立,求实数c的最小值;
(Ⅲ) 在B条件下,若f(x)在(0,+∞)上是单调函数,求实数a的取值范围.
函数
是[1,+∞)上的增函数.
(Ⅰ)求正实数a的取值范围;
(Ⅱ)若函数g(x)=x
2
+2x,在使g(x)≥M对定义域内的任意x值恒成立的所有常数M中,我们把M的最大值M=-1叫做f(x)=x
2
+2x的下确界,若函数
的定义域为[1,+∞),根据所给函数g(x)的下确界的定义,求出当a=1时函数f(x)的下确界.
(Ⅲ)设b>0,a>1,求证:
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案