题目内容
已知
<α<
π,0<β<
,且cos(
-α)=
,sin(
π+β)=
,求sin(α+β)的值.
| π |
| 4 |
| 3 |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 3 |
| 5 |
| 3 |
| 4 |
| 5 |
| 13 |
由
<α<
π,得到-
<
-α<0,
∵cos(
-α)=
,∴sin(
-α)=-
,
由0<β<
,得到
π<
π+β<π,
∵sin(
π+β)=
,∴cos(
π+β)=-
,
则sin(α+β)=-cos[
+(α+β)]=-cos[(
π+β)-(
-α)]
=-[cos(
π+β)cos(
-α)+sin(
π+β)sin(
-α)]=-(-
)×
-
×(-
)=
.
| π |
| 4 |
| 3 |
| 4 |
| π |
| 2 |
| π |
| 4 |
∵cos(
| π |
| 4 |
| 3 |
| 5 |
| π |
| 4 |
| 4 |
| 5 |
由0<β<
| π |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
∵sin(
| 3 |
| 4 |
| 5 |
| 13 |
| 3 |
| 4 |
| 12 |
| 13 |
则sin(α+β)=-cos[
| π |
| 2 |
| 3 |
| 4 |
| π |
| 4 |
=-[cos(
| 3 |
| 4 |
| π |
| 4 |
| 3 |
| 4 |
| π |
| 4 |
| 12 |
| 13 |
| 3 |
| 5 |
| 5 |
| 13 |
| 4 |
| 5 |
| 56 |
| 65 |
练习册系列答案
相关题目