ÌâÄ¿ÄÚÈÝ
19£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©ÓëÇúÏßC£º$\left\{\begin{array}{l}{x=2cos¦È}\\{y=3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©µÄÁ½¸ö½»µãΪA¡¢B£®£¨1£©ÇóÖ±ÏßlµÄÇãб½Ç£»
£¨2£©ÇóÏÒABµÄ³¤£®
·ÖÎö £¨1£©Ê×ÏÈ£¬½«¸ÃÖ±ÏߵIJÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬È»ºóÈ·¶¨ÆäбÂʼ´¿É£»
£¨2£©½«ÇúÏßCµÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬È»ºó£¬½èÖúÓÚÍÖÔ²ÓëÖ±ÏßµÄλÖùØÏµ´¦Àí˼·£¬ÁªÁ¢·½³Ì×飬Çó½â½»µã×ø±ê£¬È»ºó£¬½èÖúÓÚÁ½µãÖ®¼äµÄ¾àÀ빫ʽȷ¶¨ÆäÏÒ³¤¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉÖ±ÏßlµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬µÃ
$\sqrt{3}x$-y-2$\sqrt{3}$=0£¬
Éè¸ÃÖ±ÏßµÄÇãб½ÇΪ¦È£¬
¡àÖ±ÏßlµÄбÂÊΪtan¦È=$\sqrt{3}$£¬
¡ß0¡Ü¦È£¼¦Ð£¬
¡àÖ±ÏßlµÄÇãб½Ç¦È=$\frac{¦Ð}{3}$£®
£¨2£©¸ù¾ÝÇúÏßC£º$\left\{\begin{array}{l}{x=2cos¦È}\\{y=3sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬µÃ
$\frac{{y}^{2}}{9}+\frac{{x}^{2}}{4}=1$£¬
ÁªÁ¢·½³Ì×飬
$\left\{\begin{array}{l}{y=\sqrt{3}£¨x-2£©}\\{9{x}^{2}+4{y}^{2}=36}\end{array}\right.$£¬
7x2-16x+4=0£¬
¡àx=$\frac{2}{7}$»òx=2£¬
¡ày=-$\frac{12\sqrt{3}}{7}$»òy=0£¬
¡àA£¨$\frac{2}{7}$£¬-$\frac{12\sqrt{3}}{7}$£©£¬B£¨2£¬0£©£¬
¡à|AB|=$\sqrt{£¨\frac{2}{7}-2£©^{2}+£¨-\frac{12\sqrt{3}}{7}-0£©^{2}}$
=$\frac{24}{7}$£¬
¡à|AB|=$\frac{24}{7}$£®
µãÆÀ ±¾ÌâÖØµã¿¼²éÁËÖ±ÏߺÍÍÖÔ²µÄ²ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ¡¢Á½µã¼äµÄ¾àÀ빫ʽµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮
| A£® | y=$-\sqrt{3}$x | B£® | y=$\frac{{\sqrt{3}}}{3}$x | C£® | y=$-\frac{{\sqrt{3}}}{3}$x | D£® | y=$\sqrt{3}$x |
| A£® | a?¦Á£¬¦Á¡Í¦Â£¬b¡Í¦Â⇒a¡Íb | B£® | a¡Í¦Á£¬b¡Í¦Â£¬¦Á¡Î¦Â⇒a¡Íb | C£® | a¡Í¦Á£¬¦Á¡Î¦Â£¬b¡Î¦Â⇒a¡Íb | D£® | a¡Í¦Á£¬¦Á¡Í¦Â£¬b¡Î¦Â⇒a¡Íb |