题目内容
已知an=
+
+
+…+
(n∈N*),用放缩法证明:
<an<
.(提示:
>n 且
<
)
| 1×2 |
| 2×3 |
| 3×4 |
| n(n+1) |
| n(n+1) |
| 2 |
| n(n+2) |
| 2 |
| n(n+1) |
| n(n+1) |
| n+(n+1) |
| 2 |
分析:根据
>n 且
<
以及不等式的性质,证得
<an<
.
| n(n+1) |
| n(n+1) |
| n+(n+1) |
| 2 |
| n(n+1) |
| 2 |
| n(n+2) |
| 2 |
解答:证明:∵
=
,∴
>n,
∴an=
+
+…+
>1+2+3+…+n=
.
∵
<
,
∴an<
+
+
+…+
=
+(2+3+…+n)+
=
.
综上得:
<an<
.
| n(n+1) |
| n2+n |
| n(n+1) |
∴an=
| 1×2 |
| 2×3 |
| n(n+1) |
| n(n+1) |
| 2 |
∵
| n(n+1) |
| n+(n+1) |
| 2 |
∴an<
| 1+2 |
| 2 |
| 2+3 |
| 2 |
| 3+4 |
| 2 |
| n+(n+1) |
| 2 |
| 1 |
| 2 |
| n+1 |
| 2 |
| n(n+2) |
| 2 |
综上得:
| n(n+1) |
| 2 |
| n(n+2) |
| 2 |
点评:本题主要考查用放缩法证明不等式,属于中档题.
练习册系列答案
相关题目