题目内容
设等比数列{an}的前n项和为Sn,已知an+1=2Sn +2(n∈N*)
(I)求数列{an}的通项公式;
(Ⅱ)在an与an+1之间插人n个数,使这n+2个数组成公差为dn的等差数列,求数列{
}的前n项和Tn.
(I)求数列{an}的通项公式;
(Ⅱ)在an与an+1之间插人n个数,使这n+2个数组成公差为dn的等差数列,求数列{
| 1 | dn |
分析:(I)由an+1=2Sn +2(n∈N*)可得an=2sn-1+2(n≥2),两式相减可得an+1=3an(n≥2),结合已知等比数列的条件可得a2=3a1,可求a1,从而可求通项
(II)等差数列的性质可知dn=
=
,利用错位相减可求数列的和
(II)等差数列的性质可知dn=
| an+1-an |
| n+1 |
| 4×3n-1 |
| n+1 |
解答:解:(I)由an+1=2Sn +2(n∈N*)可得an=2sn-1+2(n≥2)
两式相减可得,an+1-an=2an
即an+1=3an(n≥2)
又∵a2=2a1+2,且数列{an}为等比数列
∴a2=3a1
则2a1+2=3a1
∴a1=2
∴an=2•3n-1
(II)由(I)知,an=2•3n-1,an+1=2•3n
∵an+1=an+(n+1)dn
∴dn=
=
Tn=
+
+
+…+
Tn=
+
+…+
+
两式相减可得,
Tn=
+
+
+…+
-
=
+
×
-
=
-
Tn=
-
两式相减可得,an+1-an=2an
即an+1=3an(n≥2)
又∵a2=2a1+2,且数列{an}为等比数列
∴a2=3a1
则2a1+2=3a1
∴a1=2
∴an=2•3n-1
(II)由(I)知,an=2•3n-1,an+1=2•3n
∵an+1=an+(n+1)dn
∴dn=
| an+1-an |
| n+1 |
| 4×3n-1 |
| n+1 |
Tn=
| 2 |
| 4•30 |
| 3 |
| 4•31 |
| 4 |
| 4•32 |
| n+1 |
| 4•3n-1 |
| 1 |
| 3 |
| 2 |
| 4•31 |
| 3 |
| 4•32 |
| n |
| 4•3n-1 |
| n+1 |
| 4•3n |
两式相减可得,
| 2 |
| 3 |
| 2 |
| 4•30 |
| 1 |
| 4•3 |
| 1 |
| 4•32 |
| 1 |
| 4•3n-1 |
| n+1 |
| 4•3n |
=
| 1 |
| 2 |
| 1 |
| 4 |
| ||||
1-
|
| n+1 |
| 4•3n |
=
| 5 |
| 8 |
| 2n+5 |
| 8•3n |
Tn=
| 15 |
| 16 |
| 2n+5 |
| 16•3n-1 |
点评:本题主要考查了等比数列的通项公式的应用及由数列的递推公式求解通项,数列求和的错位相减求和方法的应用是解答本题的关键
练习册系列答案
相关题目
设等比数列{an}的前n项和为Sn,若8a2+a5=0,则下列式子中数值不能确定的是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
设等比数列{an}的前n项和为Sn,若
=3,则
=( )
| S6 |
| S3 |
| S9 |
| S6 |
A、
| ||
B、
| ||
C、
| ||
| D、1 |