题目内容
等差数列{an}中,a1=1,a7=4,数列{bn}为等比数列,b2=a3,b3=
,则满足bn<
的最小正整数n是( )
| 1 |
| a2 |
| 1 |
| a80 |
分析:等差数列{an}中,由a1=1,a7=4,解得d=
.所以b2=a3=1+2×
=2,b3=b1q2=
=
,q=
=
=
,b1=6.所以bn=6×(
)n-1,由bn<
=
=
,得(
)n-1<
=
,由此能求出最小正整数n.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 | ||||
|
| 2 |
| 3 |
| b3 |
| b2 |
| ||
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| a80 |
| 1 | ||||
|
| 2 |
| 81 |
| 1 |
| 3 |
| 1 |
| 243 |
| 1 |
| 3 5 |
解答:解:等差数列{an}中,
∵a1=1,a7=4,
∴1+6d=4,
解得d=
.
∴an=1+(n-1)×
=
n+
,
∴b2=a3=1+2×
=2,
b3=b1q2=
=
,
∴q=
=
=
,
∵
=
,
∴b1=6.
∴bn=6×(
)n-1,
∵bn<
=
=
,
∴6×(
)n-1<
,
(
)n-1<
=
,
∴n-1>5,
∴n>6.
∴最小正整数n是7.
故选C.
∵a1=1,a7=4,
∴1+6d=4,
解得d=
| 1 |
| 2 |
∴an=1+(n-1)×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴b2=a3=1+2×
| 1 |
| 2 |
b3=b1q2=
| 1 | ||||
|
| 2 |
| 3 |
∴q=
| b3 |
| b2 |
| ||
| 2 |
| 1 |
| 3 |
∵
| b2 |
| b1 |
| 1 |
| 3 |
∴b1=6.
∴bn=6×(
| 1 |
| 3 |
∵bn<
| 1 |
| a80 |
| 1 | ||||
|
| 2 |
| 81 |
∴6×(
| 1 |
| 3 |
| 2 |
| 81 |
(
| 1 |
| 3 |
| 1 |
| 243 |
| 1 |
| 3 5 |
∴n-1>5,
∴n>6.
∴最小正整数n是7.
故选C.
点评:本题首先考查等差数列、等比数列的基本量、通项,结合含两个变量的不等式的处理问题,对数学思维的要求比较高,要求学生理解“存在”、“恒成立”,以及运用一般与特殊的关系进行否定,本题有一定的探索性.
练习册系列答案
相关题目