题目内容
已知数列a1,a2,…,a30,其中a1,a2,…,a10是首项为1,公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…,a30是公差为d2的等差数列(d≠0).
(1)若a20=40,求d;
(2)试写出a30关于d的关系式,并求a30的取值范围;
(3)续写已知数列,使得a30,a31,…,a40是公差为d3的等差数列
答案:
解析:
解析:
|
(1) (2) 当 |
练习册系列答案
相关题目
设数列{an}的前n项和为Sn,令Tn=
,称Tn为数列{an}的“理想数”,已知数列a1,a2…a501的“理想数”为2008,则数列2,a1,a2…a501的“理想数”为( )
| S1+S2+…+Sn |
| n |
| A、2002 | B、2004 |
| C、2006 | D、2008 |