ÌâÄ¿ÄÚÈÝ

15£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÓÒ½¹µãF¹ØÓÚÖ±Ïßx-2y=0¶Ô³ÆµÄµãÔÚÔ²x2+y2=4ÉÏ£®
£¨1£©Çó´ËÍÖÔ²µÄ·½³Ì£®
£¨2£©ÉèMÊÇÍÖÔ²CÉÏÒìÓÚ³¤Öá¶ËµãµÄÈÎÒâÒ»µã£¬ÊÔÎÊÔÚxÖáÉÏÊÇ·ñ´æÔÚÁ½¸ö¶¨µãA¡¢B£¬Ê¹µÃÖ±ÏßMA¡¢MBµÄбÂÊÖ®»ýΪ¶¨Öµ£¿Èô´æÔÚ£¬ÔòÇó³öÕâÁ½¸ö¶¨µã¼°¶¨Öµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÓÒ½¹µãF£¨c£¬0£©¹ØÓÚÖ±Ïßx-2y=0¶Ô³ÆµÄµã$£¨\frac{3c}{5}£¬\frac{4c}{5}£©$ÔÚÔ²x2+y2=4ÉÏ£®´úÈë¼´¿ÉµÃ³öc£¬ÔÙÀûÓÃ$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬a2=b2+c2£®¼´¿ÉµÃ³ö£®
£¨2£©ÉèA£¨s£¬0£©£¬B£¨t£¬0£©£¬M£¨x0£¬y0£©£®ÔòkMA•kMB=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-£¨s+t£©{x}_{0}+st}$£¬ÓÉÓÚ${y}_{0}^{2}=4£¨1-\frac{{x}_{0}^{2}}{8}£©$£¬¿ÉµÃkMA•kMB=$\frac{8-{x}_{0}^{2}}{2[{x}_{0}^{2}-£¨s+t£©{x}_{0}+st]}$£¬ÒªÊ¹ÉÏÊöֵΪ¶¨Öµ£¬Ôò±ØÓУºs+t=0£¬st=-8£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÉèÓÒ½¹µãF£¨c£¬0£©¹ØÓÚÖ±Ïßx-2y=0¶Ô³ÆµÄµãP£¨m£¬n£©£¬Ôò$\left\{\begin{array}{l}{\frac{m+c}{2}-2¡Á\frac{y+0}{2}=0}\\{\frac{n}{m-c}¡Á\frac{1}{2}=-1}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{m=\frac{3c}{5}}\\{n=\frac{4c}{5}}\end{array}\right.$£¬
¡ßµãP$£¨\frac{3c}{5}£¬\frac{4c}{5}£©$ÔÚÔ²x2+y2=4ÉÏ£®
¡à$£¨\frac{3c}{5}£©^{2}+£¨\frac{4c}{5}£©^{2}$=4£¬½âµÃc=2£®
¡ß$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬¡àa2=8£¬b2=4£®
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$£®
£¨2£©ÉèA£¨s£¬0£©£¬B£¨t£¬0£©£¬M£¨x0£¬y0£©£®
ÔòkMA•kMB=$\frac{{y}_{0}}{{x}_{0}-s}•\frac{{y}_{0}}{{x}_{0}-t}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-£¨s+t£©{x}_{0}+st}$£¬
¡ß${y}_{0}^{2}=4£¨1-\frac{{x}_{0}^{2}}{8}£©$£¬
¡àkMA•kMB=$\frac{8-{x}_{0}^{2}}{2[{x}_{0}^{2}-£¨s+t£©{x}_{0}+st]}$£¬
ҪʹÉÏÊöֵΪ¶¨Öµ£¬Ôò±ØÓУºs+t=0£¬st=-8£¬
½âµÃs=-t=¡À2$\sqrt{2}$£®
¡à¿ÉÈ¡A$£¨-2\sqrt{2}£¬0£©$£¬B$£¨2\sqrt{2}£¬0£©$£®
ÔòkMA•kMB=-$\frac{1}{2}$=-$\frac{{b}^{2}}{{a}^{2}}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ð±ÂʼÆË㹫ʽ¡¢¶¨ÖµÎÊÌâ¡¢µã¶Ô³ÆÎÊÌâ¡¢´¹Ö±Æ½·ÖÏßÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø