题目内容

数列{an}满足a1=1,an+1=
2n+1an
an+2n
(n∈N*).
(Ⅰ)证明:数列{
2n
an
}是等差数列;
(Ⅱ)求数列{an}的通项公式an
(Ⅲ)设bn=
1
n•2n+1
an
,求数列{bn}的前n项和Sn
(Ⅰ)由已知可知
an+1
2n+1
=
an
an+2n
,即
2n+1
an+1
=
2n
an
+1
,即
2n+1
an+1
-
2n
an
=1

∴数列{
2n
an
}是公差为1的等差数列.
(Ⅱ)由(Ⅰ)知
2n
an
=
2
a1
+(n-1)×1=2+(n-1)×1=n+1
,∴an=
2n
n+1

(Ⅲ)由(Ⅱ)知bn=
1
n•2n+1
an=
1
n•2n+1
×
2n
n+1

bn=
1
2n(n+1)
=
1
2
(
1
n
-
1
n+1
)

∴Sn=b1+b2+…+bn=
1
2
(1-
1
2
)+
1
2
(
1
2
-
1
3
)
+…+
1
2
(
1
n
1
n+1
)
=
1
2
[(1-
1
2
)+(
1
2
-
1
3
)+
+(
1
n
-
1
n+1
)]
=
n
2(n+1)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网