题目内容
数列{an}满足a1=1,an+1=
(n∈N*).
(Ⅰ)证明:数列{
}是等差数列;
(Ⅱ)求数列{an}的通项公式an;
(Ⅲ)设bn=
an,求数列{bn}的前n项和Sn.
| 2n+1an |
| an+2n |
(Ⅰ)证明:数列{
| 2n |
| an |
(Ⅱ)求数列{an}的通项公式an;
(Ⅲ)设bn=
| 1 |
| n•2n+1 |
(Ⅰ)由已知可知
=
,即
=
+1,即
-
=1
∴数列{
}是公差为1的等差数列.
(Ⅱ)由(Ⅰ)知
=
+(n-1)×1=2+(n-1)×1=n+1,∴an=
.
(Ⅲ)由(Ⅱ)知bn=
an=
×
∴bn=
=
(
-
)
∴Sn=b1+b2+…+bn=
(1-
)+
(
-
)+…+
(
)=
[(1-
)+(
-
)+…+(
-
)]=
.
| an+1 |
| 2n+1 |
| an |
| an+2n |
| 2n+1 |
| an+1 |
| 2n |
| an |
| 2n+1 |
| an+1 |
| 2n |
| an |
∴数列{
| 2n |
| an |
(Ⅱ)由(Ⅰ)知
| 2n |
| an |
| 2 |
| a1 |
| 2n |
| n+1 |
(Ⅲ)由(Ⅱ)知bn=
| 1 |
| n•2n+1 |
| 1 |
| n•2n+1 |
| 2n |
| n+1 |
∴bn=
| 1 |
| 2n(n+1) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=b1+b2+…+bn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| n |
| 2(n+1) |
练习册系列答案
相关题目