ÌâÄ¿ÄÚÈÝ
É躯Êýf£¨x£©=
x2+bx-
£¬ÒÑÖª²»ÂÛ¦Á¡¢¦ÂΪºÎʵÊý£¬ºãÓÐf£¨cos¦Á£©¡Ü0£¬f£¨2-sin¦Â£©¡Ý0£¬¶ÔÕýÊýÊýÁÐ{an}£¬ÆäǰnÏîºÍSn=f£¨an£©£¨n¡ÊN+£©£®
£¨1£©ÇóbµÄÖµ£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÎÊÊÇ·ñ´æÔڵȱÈÊýÁÐ{bn}£¬Ê¹µÃa1b1+a2b2+¡+anbn=2n+1£¨2n-1£©+2¶ÔÓÚÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¿²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨4£©Èô
=
£¨n¡ÊN+£©£¬ÇÒÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬ÊԱȽÏTnÓë
µÄ´óС£¬²¢¸øÓèÖ¤Ã÷£®
| 1 |
| 4 |
| 3 |
| 4 |
£¨1£©ÇóbµÄÖµ£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÎÊÊÇ·ñ´æÔڵȱÈÊýÁÐ{bn}£¬Ê¹µÃa1b1+a2b2+¡+anbn=2n+1£¨2n-1£©+2¶ÔÓÚÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¿²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨4£©Èô
| cn |
| 1 |
| 1+an |
| 1 |
| 6 |
·ÖÎö£º£¨1£©Áî¦Á=0£¬¦Â=
£¬¸ù¾Ýf£¨cos¦Á£©¡Ü0£¬f£¨2-sin¦Â£©¡Ý0£¬¿ÉÖªf£¨1£©=0ÇóµÃb£®
£¨2£©¸ù¾Ýº¯Êý½âÎöʽ·Ö±ð±íʾ³öSnºÍSn+1£¬½ø¶ø¸ù¾Ýan+1=Sn+1-SnÕûÀíµÃ£¨an+1+an£©£¨an+1-an-2£©=0½ø¶øÅжϳöan+1-an=2£¬ÍƶÏÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÇóµÃa1ÀûÓõȲîÊýÁеÄͨÏʽÇóµÃan£®
£¨3£©¼ÙÉè´æÔڵȱÈÊýÁÐ{bn}£¬Ê¹µÃa1b1+a2b2++anbn=2n+1£¨2n-1£©+2¶ÔÓÚÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¬Áîn=1£¬2£¬ÇóµÃb1ºÍb2½ø¶øÇóµÄÊýÁеĹ«±È£¬½ø¶ø¿ÉµÃÊýÁÐ{bn}µÄͨÏʽ£¬ÁîSn=3¡Á2+5¡Á22+¡+£¨2n+1£©2n£¬ÀûÓôíλÏà¼õ·¨ÇóµÃSn=2n+1£¨2n-1£©+2£®Ö¤Ã÷³öa1b1+a2b2+¡+anbn=2n+1£¨2n-1£©+2¶ÔÓÚÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£®
£¨4£©°Ñ£¨2£©ÖÐÇóµÃµÄan´úÈë
=
ÖÐÇóµÃcn£¬ÀûÓÃÁÑÏî·¨ÇóµÃTn=
(
-
)½ø¶ø¿ÉÖ¤Ã÷Tn£¼
£®
| ¦Ð |
| 2 |
£¨2£©¸ù¾Ýº¯Êý½âÎöʽ·Ö±ð±íʾ³öSnºÍSn+1£¬½ø¶ø¸ù¾Ýan+1=Sn+1-SnÕûÀíµÃ£¨an+1+an£©£¨an+1-an-2£©=0½ø¶øÅжϳöan+1-an=2£¬ÍƶÏÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÇóµÃa1ÀûÓõȲîÊýÁеÄͨÏʽÇóµÃan£®
£¨3£©¼ÙÉè´æÔڵȱÈÊýÁÐ{bn}£¬Ê¹µÃa1b1+a2b2++anbn=2n+1£¨2n-1£©+2¶ÔÓÚÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¬Áîn=1£¬2£¬ÇóµÃb1ºÍb2½ø¶øÇóµÄÊýÁеĹ«±È£¬½ø¶ø¿ÉµÃÊýÁÐ{bn}µÄͨÏʽ£¬ÁîSn=3¡Á2+5¡Á22+¡+£¨2n+1£©2n£¬ÀûÓôíλÏà¼õ·¨ÇóµÃSn=2n+1£¨2n-1£©+2£®Ö¤Ã÷³öa1b1+a2b2+¡+anbn=2n+1£¨2n-1£©+2¶ÔÓÚÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£®
£¨4£©°Ñ£¨2£©ÖÐÇóµÃµÄan´úÈë
| cn |
| 1 |
| 1+an |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+3 |
| 1 |
| 6 |
½â´ð£º½â£º£¨1£©ÓɶÔÈÎÒâʵÊý¦Á¡¢¦Â£¬ºãÓÐf£¨cos¦Á£©¡Ü0£¬f£¨2-sin¦Â£©¡Ý0£¬
¿ÉµÃºãÓÐf£¨cos0£©¡Ü0£¬ÇÒf£¨2-sin
£©¡Ý0£¬¼´f£¨1£©=
+b-
=0£¬¿ÉµÃb=
£»
£¨2£©ÓÉSn=f£¨an£©=
an2+
an-
£¨n¡ÊN+£©£¬¿ÉµÃSn+1=
an+12+
an+1-
¹Êan+1=Sn+1-Sn=
£¨an+12-an2£©+
£¨an+1-an£©£¬¼´£¨an+1+an£©£¨an+1-an-2£©=0£¬
ÓÖ{an}ÊÇÕýÊýÊýÁУ¬¹Êan+1+an£¾0£¬¡àan+1-an=2£¬¼´ÊýÁÐ{an}ÊǵȲîÊýÁУ®
ÓÖa1=
a12+
a1-
£¬ÇÒa1£¾0£¬¿ÉµÃa1=3£¬¹Êan=3+2£¨n-1£©=2n+1£»
£¨3£©¼ÙÉè´æÔڵȱÈÊýÁÐ{bn}£¬Ê¹µÃa1b1+a2b2++anbn=2n+1£¨2n-1£©+2¶ÔÓÚÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¬
Áîn=1£¬2£¬¿ÉµÃb1=2£¬b2=4£¬¹Ê{bn}µÄ¹«±ÈΪ2£¬´Ó¶øbn=2¡Á2n-1=2n£®
ÁîSn=3¡Á2+5¡Á22+¡+£¨2n+1£©2n⇒Sn=2n+1£¨2n-1£©+2
¹Êa1b1+a2b2++anbn=2n+1£¨2n-1£©+2¶ÔÓÚÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£®
£¨4£©
=
⇒cn=(
)2=
Tn
=
£¼
=
£®
=
(
-
)=
(
-
)£¼
£®
¿ÉµÃºãÓÐf£¨cos0£©¡Ü0£¬ÇÒf£¨2-sin
| ¦Ð |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2 |
£¨2£©ÓÉSn=f£¨an£©=
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
¹Êan+1=Sn+1-Sn=
| 1 |
| 4 |
| 1 |
| 2 |
ÓÖ{an}ÊÇÕýÊýÊýÁУ¬¹Êan+1+an£¾0£¬¡àan+1-an=2£¬¼´ÊýÁÐ{an}ÊǵȲîÊýÁУ®
ÓÖa1=
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
£¨3£©¼ÙÉè´æÔڵȱÈÊýÁÐ{bn}£¬Ê¹µÃa1b1+a2b2++anbn=2n+1£¨2n-1£©+2¶ÔÓÚÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¬
Áîn=1£¬2£¬¿ÉµÃb1=2£¬b2=4£¬¹Ê{bn}µÄ¹«±ÈΪ2£¬´Ó¶øbn=2¡Á2n-1=2n£®
ÁîSn=3¡Á2+5¡Á22+¡+£¨2n+1£©2n⇒Sn=2n+1£¨2n-1£©+2
¹Êa1b1+a2b2++anbn=2n+1£¨2n-1£©+2¶ÔÓÚÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£®
£¨4£©
| cn |
| 1 |
| 1+an |
| 1 |
| 1+an |
| 1 |
| (1+an)2 |
=
| n |
| i=1 |
| 1 |
| (2i+2)2 |
| n |
| i=1 |
| 1 |
| (2i+2)2-1 |
| n |
| i=1 |
| 1 |
| (2i+1)(2i+3) |
=
| 1 |
| 2 |
| n |
| i=1 |
| 1 |
| 2i+1 |
| 1 |
| 2i+3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+3 |
| 1 |
| 6 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éµÈ²îÊýÁеÄͨÏʽµÄÓ¦Óã®Éæ¼°ÁËÊýÁеÄÇóºÍ¡¢²»µÈʽµÈÎÊÌ⣬¿¼²éÁËѧÉú½â¾öʵ¼ÊÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿