题目内容
设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足
+
+…+
=1-
,n∈N*,求{bn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足
| b1 |
| a1 |
| b2 |
| a2 |
| bn |
| an |
| 1 |
| 2n |
(Ⅰ)设等差数列{an}的首项为a1,公差为d,由S4=4S2,a2n=2an+1得:
,
解得a1=1,d=2.
∴an=2n-1,n∈N*.
(Ⅱ)由已知
+
+…+
=1-
,n∈N*,得:
当n=1时,
=
,
当n≥2时,
=(1-
)-(1-
)=
,显然,n=1时符合.
∴
=
,n∈N*
由(Ⅰ)知,an=2n-1,n∈N*.
∴bn=
,n∈N*.
又Tn=
+
+
+…+
,
∴
Tn=
+
+…+
+
,
两式相减得:
Tn=
+(
+
+…+
)-
=
-
-
∴Tn=3-
.
|
解得a1=1,d=2.
∴an=2n-1,n∈N*.
(Ⅱ)由已知
| b1 |
| a1 |
| b2 |
| a2 |
| bn |
| an |
| 1 |
| 2n |
当n=1时,
| b1 |
| a1 |
| 1 |
| 2 |
当n≥2时,
| bn |
| an |
| 1 |
| 2n |
| 1 |
| 2n-1 |
| 1 |
| 2n |
∴
| bn |
| an |
| 1 |
| 2n |
由(Ⅰ)知,an=2n-1,n∈N*.
∴bn=
| 2n-1 |
| 2n |
又Tn=
| 1 |
| 2 |
| 3 |
| 22 |
| 5 |
| 23 |
| 2n-1 |
| 2n |
∴
| 1 |
| 2 |
| 1 |
| 22 |
| 3 |
| 23 |
| 2n-3 |
| 2n |
| 2n-1 |
| 2n+1 |
两式相减得:
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| 2 |
| 23 |
| 2 |
| 2n |
| 2n-1 |
| 2n+1 |
=
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 2n-1 |
| 2n+1 |
∴Tn=3-
| 2n+3 |
| 2n |
练习册系列答案
相关题目