题目内容

平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1),回答下列问题:

(1)求3ab-2c

(2)求满足ambnc的实数mn

(3)若(akc)∥(2ba),求实数k.

 

【答案】

(1)3ab-2c= (0,6).

(2)

(3) k=-.

【解析】(1)3ab-2c=3(3,2)+(-1,2)-2(4,1)=(9,6)+(-1,2)-(8,2)=(0,6).

(2)∵ambnc

∴(3,2)=m(-1,2)+n(4,1)=(-m+4n,2mn).

解之得

(3)∵(akc)∥(2ba),

akc=(3+4k,2+k),2ba=(-5,2).

∴2×(3+4k)-(-5)×(2+k)=0,∴k=-.

 

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网