题目内容
已知函数f(x)=| x |
| ax+b |
(1)求f(x)的表达式;
(2)记xn=f(xn-1)(n∈N且n>1),且x1=f(1),求数列{xn}的通项公式.
(3)记 yn=xn•xn+1,数列{yn}的前n项和为Sn,求证Sn<
| 4 |
| 3 |
分析:(1)由ax2+(b-1)x=0有唯一解,知b=1,由f(2)=
=1,知a=
,由此能求出f(x)的表达式.
(2)由xn=f(xn-1)=
,知
=
+
,由x1=f(1)=
,知
=
,由此能求出数列{xn}的通项公式.
(3)由yn=xn•xn+1=
×
=4(
-
),知Sn=y1+y2+y3+…+yn=x1x2+x2x3+…+xnxn+1=4[(
-
)+(
-
)+…+(
-
)],由此能证明Sn<
.
| 2 |
| ax2+1 |
| 1 |
| 2 |
(2)由xn=f(xn-1)=
| xn-1 | ||
|
| 1 |
| xn |
| 1 |
| xn-1 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| x1 |
| 3 |
| 2 |
(3)由yn=xn•xn+1=
| 2 |
| n+2 |
| 2 |
| n+3 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 4 |
| 3 |
解答:解:(1)由f(x)=
=x即ax2+(b-1)x=0有唯一解,∴b=1,
又f(2)=
=1,∴a=
,
∴f(x)=
=
,(4分)
(2)由xn=f(xn-1)=
,∴
=
+
,(6分)
又x1=f(1)=
,∴
=
,
∴数列{
}是以首项为
,公差为
的等差数列(8分)
∴
=
+(n-1)×
=
,∴xn=
(10分)
(3)由yn=xn•xn+1=
×
=4(
-
)(12分)
∴Sn=y1+y2+y3+…+yn=x1x2+x2x3+…+xnxn+1
=4[(
-
)+(
-
)+…+(
-
)]
=4(
-
)<
.(14分)
| x |
| ax+b |
又f(2)=
| 2 |
| ax2+1 |
| 1 |
| 2 |
∴f(x)=
| x | ||
|
| 2x |
| x+2 |
(2)由xn=f(xn-1)=
| xn-1 | ||
|
| 1 |
| xn |
| 1 |
| xn-1 |
| 1 |
| 2 |
又x1=f(1)=
| 2 |
| 3 |
| 1 |
| x1 |
| 3 |
| 2 |
∴数列{
| 1 |
| xn |
| 3 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| xn |
| 3 |
| 2 |
| 1 |
| 2 |
| n+2 |
| 2 |
| 2 |
| n+2 |
(3)由yn=xn•xn+1=
| 2 |
| n+2 |
| 2 |
| n+3 |
| 1 |
| n+2 |
| 1 |
| n+3 |
∴Sn=y1+y2+y3+…+yn=x1x2+x2x3+…+xnxn+1
=4[(
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n+2 |
| 1 |
| n+3 |
=4(
| 1 |
| 3 |
| 1 |
| n+3 |
| 4 |
| 3 |
点评:本题考查数列的性质和应用,解题时要注意通项公式的求法和裂项公式的合理运用.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|