题目内容
数列{an}满足an=2an-1+2n+1(n∈N*,n≥2),a3=27.
(Ⅰ)求a1,a2的值;
(Ⅱ)已知bn=
(an+t)(n∈N*),若数列{bn}成等差数列,求实数t;
(Ⅲ)求数列{an}的前n项和Sn.
(Ⅰ)求a1,a2的值;
(Ⅱ)已知bn=
| 1 | 2n |
(Ⅲ)求数列{an}的前n项和Sn.
分析:(Ⅰ)由an=2an-1+2n+1(n∈N*,n≥2),令n=3即可解得a2.令n=2即可解得a1.
(II)由an=2an-1+2n+1(n∈N*,n≥2),变形为an+1=2(an-1+1)+2n⇒
=
+1(n∈N*,n≥2),令bn=
(an+1)(n∈N*),即可证明数列{bn}成等差数列;
(III)由(II)可得bn,an,再利用“错位相减法”即可得出.
(II)由an=2an-1+2n+1(n∈N*,n≥2),变形为an+1=2(an-1+1)+2n⇒
| an+1 |
| 2n |
| an-1+1 |
| 2n-1 |
| 1 |
| 2n |
(III)由(II)可得bn,an,再利用“错位相减法”即可得出.
解答:解:(Ⅰ)由an=2an-1+2n+1(n∈N*,n≥2),得a3=2a2+23+1=27,解得a2=9.
a2=2a1+22+1=9,解得a1=2.
(Ⅱ)由an=2an-1+2n+1(n∈N*,n≥2),
⇒an+1=2(an-1+1)+2n,
⇒
=
+1(n∈N*,n≥2)
⇒
-
=1(n∈N*,n≥2),
令bn=
(an+1)(n∈N*),
∴bn-bn-1=1(n≥2)
∴数列{bn}成等差数列,
∴t=1.
(Ⅲ)∵{bn}成等差数列,
∴bn=b1+(n-1)d=
+(n-1)=
.
又bn=
(an+1)=
;
解得an=(2n+1)•2n-1-1(n∈N*),
∴Sn=3•1+5•2+7•22+…+(2n+1)•2n-1-n①
2Sn=3•2+5•22+7•23+…+(2n+1)•2n-2n②
①-②得-Sn=3+2•2+2•22+…+2•2n-1-(2n+1)•2n+n=3+22+23+…+2n-(2n+1)•2n+n=3+
-(2n+1)•2n+n=(-2n+1)•2n+n-1.
∴Sn=(2n-1)•2n-n+1(n∈N*)
a2=2a1+22+1=9,解得a1=2.
(Ⅱ)由an=2an-1+2n+1(n∈N*,n≥2),
⇒an+1=2(an-1+1)+2n,
⇒
| an+1 |
| 2n |
| an-1+1 |
| 2n-1 |
⇒
| an+1 |
| 2n |
| an-1+1 |
| 2n-1 |
令bn=
| 1 |
| 2n |
∴bn-bn-1=1(n≥2)
∴数列{bn}成等差数列,
∴t=1.
(Ⅲ)∵{bn}成等差数列,
∴bn=b1+(n-1)d=
| 3 |
| 2 |
| 2n+1 |
| 2 |
又bn=
| 1 |
| 2n |
| 2n+1 |
| 2 |
解得an=(2n+1)•2n-1-1(n∈N*),
∴Sn=3•1+5•2+7•22+…+(2n+1)•2n-1-n①
2Sn=3•2+5•22+7•23+…+(2n+1)•2n-2n②
①-②得-Sn=3+2•2+2•22+…+2•2n-1-(2n+1)•2n+n=3+22+23+…+2n-(2n+1)•2n+n=3+
| 4(1-2n-1) |
| 1-2 |
∴Sn=(2n-1)•2n-n+1(n∈N*)
点评:本题考查了递推式的意义、通过变形化为等差数列求通项公式、等比数列的前n项和公式、“错位相减法”等基础知识与基本技能方法,考查了分析问题和解决问题的能力,属于难题.
练习册系列答案
相关题目