题目内容
17.已知△ABC的三边AB、BC、CA所在直线方程分别为3x+y-2=0,2x-3y-1=0,x-y-3=0,求:(1)顶点A、B、C的坐标;
(2)△ABC的面积.
分析 (1)分别联立直线方程构成的方程组,求解方程组得答案;
(2)由(1)中求出的点的坐标求得AC的长度,再由点到直线的距离公式求出B到AC的距离,代入三角形的面积公式得答案.
解答 解:(1)联立$\left\{\begin{array}{l}{3x+y-2=0}\\{2x-3y-1=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{7}{11}}\\{y=\frac{1}{11}}\end{array}\right.$,∴B($\frac{7}{11},\frac{1}{11}$);
联立$\left\{\begin{array}{l}{3x+y-2=0}\\{x-y-3=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\frac{5}{4}}\\{y=-\frac{7}{4}}\end{array}\right.$,∴A($\frac{5}{4},-\frac{7}{4}$);
联立$\left\{\begin{array}{l}{2x-3y-1=0}\\{x-y-3=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=8}\\{y=5}\end{array}\right.$,∴C(8,5).
∴顶点A、B、C的坐标分别为:A($\frac{5}{4},-\frac{7}{4}$),B($\frac{7}{11},\frac{1}{11}$),C(8,5);
(2)|AC|=$\sqrt{(8-\frac{5}{4})^{2}+(5+\frac{7}{4})^{2}}=\frac{27\sqrt{2}}{4}$,
B($\frac{7}{11},\frac{1}{11}$)到直线AC:x-y-3=0的距离为d=$\frac{|\frac{7}{11}-\frac{1}{11}-3|}{\sqrt{2}}=\frac{5\sqrt{2}}{22}$,
∴${S}_{△ABC}=\frac{1}{2}×\frac{27\sqrt{2}}{4}×\frac{5\sqrt{2}}{22}$=$\frac{135}{88}$.
点评 本题考查了两条直线的交点坐标,考查了点到直线的距离公式,是基础题.
| A. | y2=6x-3 | B. | y2=2x-3 | C. | x2=6y-3 | D. | x2-4x-2y+3=0 |
| A. | -$\frac{6\sqrt{5}}{5}$ | B. | ±$\frac{6\sqrt{5}}{5}$ | C. | $\frac{5}{2}$ | D. | ±$\frac{5}{2}$ |
| 广告费用x(单位:万元) | 2 | 3 | 4 | 5 |
| 利润y(单位:万元) | 26 | ● | 49 | 54 |