题目内容
(坐标系与参数方程选做题)已知直线l方程是
【答案】分析:把直线的参数方程化为普通方程,再把圆C的极坐标方程化为普通方程,求出圆心坐标,再利用点到直线的距离公式求出圆心C到直线l的距离.
解答:解:直线l的参数方程为
(参数t∈R),消去t的普通方程为 x-y-2=0,
∵圆C的极坐标方程为ρ=1
∴圆C的普通方程为 x2+y2=1,圆心(0,0),半径为1,
则圆心C到直线l的距离为d=
=
,圆C上的点到直线l的距离最小值是d-r=
故答案为:
点评:本题以曲线参数方程、极坐标方程出发,考查了参数方程、极坐标方程、普通方程间的互化,直线和圆的位置关系.
解答:解:直线l的参数方程为
∵圆C的极坐标方程为ρ=1
∴圆C的普通方程为 x2+y2=1,圆心(0,0),半径为1,
则圆心C到直线l的距离为d=
故答案为:
点评:本题以曲线参数方程、极坐标方程出发,考查了参数方程、极坐标方程、普通方程间的互化,直线和圆的位置关系.
练习册系列答案
相关题目