题目内容

已知向量数学公式,实数m,n满足数学公式,则(m-3)2+n2的最大值为


  1. A.
    2
  2. B.
    4
  3. C.
    8
  4. D.
    16
D
分析:利用向量的运算法则及两向量相等的公式可求出m,n;表示出(m-3)2+n2,据三角函数的有界性求出三角函数的最值.
解答:∵
∴(m+n,m-n)=(cosα,sinα)(α∈R)
∴m+n=cosα,m-n=sinα,
∴m=sin(α+),n=cos(α+),
∴(m-3)2+n2=m2+n2-6m+9=10-6sin(α+
∵sin(α+)∈[-1,1]
∴(m-3)2+n2的最大值为16
故选D
点评:本题考查向量的运算法则,向量相等的坐标公式,以及三角函数的有界性,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网