题目内容

已知a=
1
-1
(1+
1-x2
)dx
,则[(a-
π
2
)x-
1
x
]6
展开式中的常数项为
 
分析:先求出定积分的值得到a,然后把a代入得到[(a-
π
2
)x-
1
x
]
6
得到(2x-
1
x
)
6
,最后利用二次项定理求出第四项为常数项即可.
解答:解:因为a=
1
-1
(1+
1-x2
)dx
=
1
2
x2+
1
2
(arcsinx+x
1-x2
)|-11=
π
2
+2,代入得[(a-
π
2
)x-
1
x
]
6
=(2x-
1
x
)
6

根据二次项定理可得,展开式中的常数项为c63(2x)3(-
1
x
)
3
=-160
故答案为-160
点评:考查学生利用定积分求值的能力,以及会利用二次项定理将多项式的乘方展开.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网