题目内容
函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)和f(-1)的值;
(2)判断f(x)的奇偶性并证明;
(3)若f(4)=1,f(3x+4)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.
(1)求f(1)和f(-1)的值;
(2)判断f(x)的奇偶性并证明;
(3)若f(4)=1,f(3x+4)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.
(1)令x1=x2=1,有f(1)=f(1)+f(1),
所以f(1)=0.
令x1=x2=-1,有f(1)=f(-1)+f(-1)=0,
所以f(-1)=0.
(2)f(x)为偶函数,证明如下:
令x1=-1,有f(-x2)=f(-1)+f(x2),
∴f(-x2)=f(x2),
又定义域关于原点对称,所以f(x)为偶函数.
(3)因为f(4)=1,所以f(16)=f(4)+f(4)=2,
所以f(3x+4)<f(16),
又函数为偶函数,所以f(|3x+4|)<f(16),
所以
,解得x的取值范围是:-
<x<4且x≠-
.
所以f(1)=0.
令x1=x2=-1,有f(1)=f(-1)+f(-1)=0,
所以f(-1)=0.
(2)f(x)为偶函数,证明如下:
令x1=-1,有f(-x2)=f(-1)+f(x2),
∴f(-x2)=f(x2),
又定义域关于原点对称,所以f(x)为偶函数.
(3)因为f(4)=1,所以f(16)=f(4)+f(4)=2,
所以f(3x+4)<f(16),
又函数为偶函数,所以f(|3x+4|)<f(16),
所以
|
| 20 |
| 3 |
| 4 |
| 3 |
练习册系列答案
相关题目
若函数f(x)的定义域为[-1,2],则函数
的定义域为( )
| f(x+2) |
| x |
| A、[-1,0)∪(0,2] |
| B、[-3,0) |
| C、[1,4] |
| D、(0,2] |