题目内容
(本题满分14分)
如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、PC的中点.
|
(2)求证:EF⊥CD;
(3)若ÐPDA=45°,求EF与平面ABCD所成的角的大小
(1)证明:如图,过F作FG平行CD交PD于G,连结AG
∵
∴
∴
平面
…… 5分
(2)证明: ∵ 四边形ABCD是矩形 ∴
又
∴
∵![]()
∴
∵ ![]()
C
∵
∴
…… 10分
(3)解:过G作GH平行PA交AD于H, ∵![]()
∴
∴
为直线
与平面角
所成的角
∵
G为PD中点 ∴
∴![]()
∵
∴
所成的角为
…… 14分
练习册系列答案
相关题目