题目内容

已知x1,x2是函数f(x)=ax2+bx+1(a,b∈R,a>0)的两个零点,函数f(x)的最小值为-a,记P={x|f(x)<0,x∈R}
(ⅰ)试探求x1,x2之间的等量关系(不含a,b);
(ⅱ)当且仅当a在什么范围内,函数g(x)=f(x)+2x(x∈P)存在最小值?
(ⅲ)若x1∈(-2,2),试确定b的取值范围.
分析:(1)由二次函数的最小值可得b2-4ac=4a2,由求根公式可得结论;
(2)由二次函数的对称轴结合图象可知在对称轴处取到最小值;(3)由b2=4a+4a2,可得a>
1
8
,从而得到b的范围.
解答:解:(1)由题意可得
4ac-b2
4a
=-a
即b2-4ac=4a2,所以x1,2=
-b±
4a2
2a
=
-b±2a
2a

所以|x1-x2|=2…5'
(2)由f(x)<0得
-b-2a
2a
<x<
-b+2a
2a
,g(x)=ax2+(b+2)x+1,对称轴为x°=-
b+2
2a

从而有
-b-2a
2a
<-
b+2
2a
-b+2a
2a
,故有a>1…8'
(3)x1,2=
-b±2a
2a
∈(-2,2),从而有-2<
-b-2a
2a
<2
-2<
-b+2a
2a
<2
…10'
所以-1<
-b
2a
<3
-3<
-b
2a
<1
从而有-3<
-b
2a
<3
,|b|<6a,b2<36a2
因为b2=4a+4a2,所以4a+4a2<36a2a>
1
8
,b2=4a+4a2>4(
1
8
+
1
64
)=
9
16

所以b的取值范围为(-∞,-
3
4
)∪(
3
4
,+∞)
…16'
点评:本题为二次函数问题,数量运用数形结合是解决问题的关键,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网