题目内容
已知数列{an}:an=
,求
(n+1)(an-an+1)的值.
| 8 |
| (n+1)(n+3) |
| ∞ |
| n=1 |
分析:先找通项的特征,进行裂项,之后进行分组求和即可求解
解答:解:∵(n+1)(an-an+1)=8(n+1)[
-
]
=
-
=
-
=
=
=8•[
+
]
=4•(
-
)+8(
-
)
∴
(n+1)(an-an+1)=4
(
-
)+8
(
-
)
=4•(
+
)+8•
=
| 1 |
| (n+1)(n+3) |
| 1 |
| (n+2)(n+4) |
=
| 8 |
| n+3 |
| 8(n+1) |
| (n+2)(n+4) |
| 8(n+4) |
| (n+3)(n+4) |
| 8(n+1) |
| (n+2)(n+4) |
=
| 8(2n+5) |
| (n+2)(n+3)(n+4) |
| 8[(n+2)+(n+3)] |
| (n+2)(n+3)(n+4) |
=8•[
| 1 |
| (n+2)(n+4) |
| 1 |
| (n+3)(n+4) |
=4•(
| 1 |
| n+2 |
| 1 |
| n+4 |
| 1 |
| n+3 |
| 1 |
| n+4 |
∴
| ∞ |
| n=1 |
| ∞ |
| n=1 |
| 1 |
| n+2 |
| 1 |
| n+4 |
| ∞ |
| n=1 |
| 1 |
| n+3 |
| 1 |
| n+4 |
=4•(
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 13 |
| 3 |
点评:本题主要考查了数列求和的应用,解题的关键是寻求数列的通项的规律,数列裂项求和是该题的重点
练习册系列答案
相关题目