题目内容
【题目】已知函数
是
上的奇函数,其中
,则下 列关于函数
的描述中,其中正确的是( )
①将函数
的图象向右平移
个单位可以得到函数
的图象;
②函数
图象的一条对称轴方程为
;
③当
时,函数
的最小值为
;
④函数
在
上单调递增.
A.①③B.③④C.②③D.②④
【答案】C
【解析】
根据题意,函数
是
上的奇函数,推出函数
是
上的偶函数,求得
,代入两个函数中,根据三角函数的平移及性质,依此判断各个描述的正误,即可求解
因函数
是
上的奇函数,
要使函数
是
上的奇函数,则函数
是
上的偶函数,
又
得
,所以
,
则有
,
.
将函数
的图象向右平移
个单位得到函数
的图象,①错误;
当
时,
,②正确;
当
时,
,于是函数
的最小值为
,③正确;
由
,所以
,又
在
单调递减
所以函数
在
上单调递减,故④错误.
故选C.
【题目】为了提高生产线的运行效率,工厂对生产线的设备进行了技术改造.为了对比技术改造后的效果,采集了生产线的技术改造前后各20次连续正常运行的时间长度(单位:天)数据,并绘制了如下茎叶图:
![]()
(Ⅰ)(1)设所采集的40个连续正常运行时间的中位数
,并将连续正常运行时间超过
和不超过
的次数填入下面的列联表:
超过 | 不超过 | |
改造前 |
|
|
改造后 |
|
|
试写出
,
,
,
的值;
(2)根据(1)中的列联表,能否有
的把握认为生产线技术改造前后的连续正常运行时间有差异?
附:
,
| 0.050> | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
(Ⅱ)工厂的生产线的运行需要进行维护.工厂对生产线的生产维护费用包括正常维护费、保障维护费两种对生产线设定维护周期为
天(即从开工运行到第
天(
)进行维护.生产线在一个生产周期内设置几个维护周期,每个维护周期相互独立.在一个维护周期内,若生产线能连续运行,则不会产生保障维护费;若生产线不能连续运行,则产生保障维护费.经测算,正常维护费为0.5万元
次;保障维护费第一次为0.2万元
周期,此后每增加一次则保障维护费增加0.2万元.现制定生产线一个生产周期(以120天计)内的维护方案:
,
,2,3,4.以生产线在技术改造后一个维护周期内能连续正常运行的频率作为概率,求一个生产周期内生产维护费的分布列及期望值.