题目内容

O是△ABC所在的平面内的一点,且满足(
OB
-
OC
)•(
OB
+
OC
-2
OA
)=0,则△ABC的形状一定为(  )
A、正三角形B、直角三角形
C、等腰三角形D、斜三角形
分析:利用向量的运算法则将等式中的向量
OA
OB
OC
用三角形的各边对应的向量表示,得到边的关系,得出三角形的形状.
解答:解:∵(
OB
-
OC
)•(
OB
+
OC
-2
OA
)

=(
OB
-
OC
)[(
OB
-
OA
)+(
OC
-
OA
)]

=(
OB
-
OC
)•(
AB
+
AC
)=
CB
•(
AB
+
AC
)

=(
AB
-
AC
)•(
AB
+
AC
)=|
AB
|
2
-|
AC
|
2
=0,
|
AB
|=|
AC
|

∴△ABC为等腰三角形.
故选C
点评:此题考查了三角形形状的判断,涉及的知识有平面向量的平行四边形法则,平面向量的数量积运算,向量模的计算,以及等腰三角形的判定方法,熟练掌握平面向量的数量积运算法则是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网