题目内容
【题目】北京时间3月15日下午,谷歌围棋人工智能
与韩国棋手李世石进行最后一轮较量,
获得本场比赛胜利,最终人机大战总比分定格
.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有
的把握认为“围棋迷”与性别有关?![]()
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为
。若每次抽取的结果是相互独立的,求
的分布列,期望
和方差
.
附:
,其中
.
| 0.05 | 0.01 |
| 3.841 | 6.635 |
【答案】解:(Ⅰ)由频率分布直方图可知,在抽取的100人中,“围棋迷”有25人,从而
列联表如下
非围棋迷 | 围棋迷 | 合计 | |
男 | 30 | 15 | 45 |
女 | 45 | 10 | 55 |
合计 | 75 | 25 | 100 |
将
列联表中的数据代入公式计算,得![]()
因为
,所以没有理由认为“围棋迷”与性别有关.
(Ⅱ)由频率分布直方图知抽到“围棋迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“围棋迷”的概率为
.由题意
,从而
的分布列为
| 0 | 1 | 2 | 3 |
|
|
|
|
|
.
.
【解析】本题主要考查了频率分布直方图,以及独立检验数学期望的求法的应用。(1)根据频率分布直方图填写2×2分布图,计算观测值,比较临界值即可得结论。(2)由频率分布直方图计算频率,将频率视为概率,然后由分布列,根据数学期望计算求解。
【考点精析】认真审题,首先需要了解频率分布直方图(频率分布表和率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息).