题目内容

过点P(-3,1)且方向向量为
a
=(2,-5)
的光线经直线y=-2反射后通过抛物线y2=mx,(m≠0)的焦点,则抛物线的方程为(  )
A、y2=-2x
B、y2=-
3
2
x
C、y2=4x
D、y2=-4x
分析:用点斜式求出入射光线的方程,求出入射光线和直线y=-2的交点为A(-
9
5
,-2 ),点P关于直线y=-2的对称点P′,
用两点式求得反射光线P′A的方程,根据反射光线与x轴的交点 即为抛物线y2=mx,(m≠0)的焦点,得到
m
4
=-1,从而求得抛物线的方程.
解答:解:入射光线的斜率为
-5
2
,故入射光线的方程为 y-1=
-5
2
(x+3),即 5x+2y+13=0.
故入射光线和直线y=-2的交点为A(-
9
5
,-2 ),点P关于直线y=-2的对称点P′(-3,-5)在反射光线上,
故反射光线P′A的方程为 
y+5
-2+5
=
x+3
-
9
5
+3
,即 15x-6y+15=0.
故反射光线P′A与x轴的交点(-1,0)即为抛物线y2=mx,(m≠0)的焦点,
m
4
=-1,∴m=-4,
故选D.
点评:本题考查直线和圆锥曲线的位置关系,反射定律得应用,求一个点关于某直线的对称点,求出反射光线P′A的方程,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网