题目内容
【答案】分析:利用类比推理,将平面中的线与空间中的面类比,得到类比结论.
通过连接DM,据BC⊥AM,BC⊥AD得到BC⊥ADE得到BC⊥ED得到满足平面条件的三角形AED,利用平面三角形的性质得证.
解答:解:命题是:三棱锥A-BCD中,AD⊥面ABC,若A点在三角形BCD所在平面内的射影为M,
则有S△ABC2=S△BCM•S△BCD是一个真命题.
证明如下:
在图(2)中,连接DM,并延长交BC于E,连接AE,则有DE⊥BC.
因为AD⊥面ABC,所以AD⊥AE.
又AM⊥DE,所以AE2=EM•ED.
于是
=S△BCM•S△BCD.
故有S△ABC2=S△BCM•S△BCD
点评:本题考查类比推理及利用平面的性质证明空间的结论.考查空间想象能力,逻辑思维能力.
通过连接DM,据BC⊥AM,BC⊥AD得到BC⊥ADE得到BC⊥ED得到满足平面条件的三角形AED,利用平面三角形的性质得证.
解答:解:命题是:三棱锥A-BCD中,AD⊥面ABC,若A点在三角形BCD所在平面内的射影为M,
则有S△ABC2=S△BCM•S△BCD是一个真命题.
证明如下:
在图(2)中,连接DM,并延长交BC于E,连接AE,则有DE⊥BC.
因为AD⊥面ABC,所以AD⊥AE.
又AM⊥DE,所以AE2=EM•ED.
于是
故有S△ABC2=S△BCM•S△BCD
点评:本题考查类比推理及利用平面的性质证明空间的结论.考查空间想象能力,逻辑思维能力.
练习册系列答案
相关题目