题目内容
(2013•滨州一模)已知数列{an}的前n项和是Sn,且Sn+
an=1(n∈N+)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log
(1-Sn+1)(n∈N+),令Tn=
+
+…+
,求Tn.
| 1 |
| 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log
| 1 |
| 3 |
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| bnbn+1 |
分析:(Ⅰ)首先由递推式求出a1,取n=n-1(n≥2)得另一递推式,两式作差后可证出数列{an}是等比数列,则其通项公式可求;
(Ⅱ)把(Ⅰ)中求出的an代入递推式,则可求出1-Sn+1,整理后得到bn,最后利用裂项相消求Tn.
(Ⅱ)把(Ⅰ)中求出的an代入递推式,则可求出1-Sn+1,整理后得到bn,最后利用裂项相消求Tn.
解答:解:(Ⅰ)当n=1时,a1=S1,由S1+
a1=a1+
a1=1,得:a1=
.
当n≥2时,Sn=1-
an,Sn-1=1-
an-1.
则Sn-Sn-1=
(an-1-an),即an=
(an-1-an),
所以an=
an-1(n≥2).
∵a1=
≠0,∴
=
.
故数列{an}是以
为首项,
为公比的等比数列.
故an=a1qn-1=
•(
)n-1=2•(
)n(n∈N*).
(Ⅱ)∵Sn+
an=1,∴1-Sn=
an.
∴bn=log
(1-Sn+1)=log
(
)n+1=n+1.
∴
=
=
-
.
所以,Tn=
+
+…+
=(
-
)+(
-
)+…+(
-
)=
-
=
.
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
当n≥2时,Sn=1-
| 1 |
| 2 |
| 1 |
| 2 |
则Sn-Sn-1=
| 1 |
| 2 |
| 1 |
| 2 |
所以an=
| 1 |
| 3 |
∵a1=
| 2 |
| 3 |
| an |
| an-1 |
| 1 |
| 3 |
故数列{an}是以
| 2 |
| 3 |
| 1 |
| 3 |
故an=a1qn-1=
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
(Ⅱ)∵Sn+
| 1 |
| 2 |
| 1 |
| 2 |
∴bn=log
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∴
| 1 |
| bnbn+1 |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
所以,Tn=
| 1 |
| b1b2 |
| 1 |
| b2b3 |
| 1 |
| bnbn+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| n |
| 2(n+2) |
点评:本题考查了等差数列和等比数列的通项公式,考查了裂项相消法求数列的前n项和,考查了计算能力,是中档题.
练习册系列答案
相关题目