题目内容

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数,且满足以下三个条件:①f(0)=0;②;③f(1-x)=1-f(x).则=( )
A.
B.
C.1
D.
【答案】分析:由已知中函数f(x)满足的三个条件:①f(0)=0;②;③f(1-x)=1-f(x),我们可以求出f(1),f(),f(),进而求出f(),f()的函数值,又由函数f(x)为非减函数,求出f()的值,即可得到答案.
解答:解:∵f(0)=0,f(1-x)=1-f(x),
则f(1)=f(1-0)=1-f(0)=1,
f(1-)=f()=1-f(),即f()=
又∵
f()=f(1)=
∴f()=f()=
又∵函数f(x)为非减函数
又由
∴f()=
=
故选A.
点评:本题考查的知识点是抽象函数的应用,其中根据已知中函数f(x)满足的三个条件及函数f(x)为非减函数,求出相应函数的函数值是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网