题目内容

已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足|+|=+)+2。
(1)求曲线C的方程;
(2)动点Q(x0,y0)(-2<x0<2)在曲线C上,曲线C在点Q处的切线为l,问:是否存在定点P(0,t)(t<0),使得l与PA,PB都不相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值,若不存在,说明理由。
解:(1)由 =(-2-x,1-y),=(2-x,1-y)
可得 +=(-2x,2-2y),
∴|+|=
·(+)+2=(x,y)(0,2)+2=2y+2
由题意可得=2y+2,化简可得x2=4y.
(2)假设存在点P(0,t)(t<0),满足条件,
则直线PA的方程是y=,直线PB的方程是y=
∵-2<x0<2,

①当-1<t<0时,,存在x0∈(-2,2),
使得
∴l∥PA,
∴当-1<t<0时,不符合题意;
②当t≤-1时,
∴l与直线PA,PB一定相交,分别联立方程组
解得D,E的横坐标分别是

∵|FP|=-
=

=×
∵x0∈(-2,2),
△QAB与△PDE的面积之比是常数
,解得t=-1,
∴△QAB与△PDE的面积之比是2。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网