题目内容

已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设
a
=
AB
b
=
AC

(Ⅰ)求
a
b
的夹角θ的余弦值;
(Ⅱ)若向量k
a
+
b
k
a
-2
b
互相垂直,求实数k的值;
(Ⅲ)若向量λ
a
-
b
a
b
共线,求实数λ的值.
分析:(I)利用向量夹角公式即可得出;
(II)利用向量垂直于数量积的关系即可得出;
(III)利用向量共线定理即可得出.
解答:解:
a
=
AB
=(1,1,0)
b
=
AC
=(-1,0,2)
.      
(Ⅰ)cosθ=
a
b
|
a
|•|
b
|
=
-1+0+0
2
×
5
=-
10
10

a
b
的夹角θ的余弦值为-
10
10

(Ⅱ) k
a
+
b
=(k-1,k,2)
k
a
-2
b
=(k+2,k,-4)

∵向量k
a
+
b
k
a
-2
b
互相垂直,
(k
a
+
b
)•(k
a
-2
b
)=(k-1,k,2)•(k+2,k,-4)
=(k-1)(k+2)+k2-8=2k2+k-10=0
k=-
5
2
,或k=2.
(Ⅲ) λ
a
-
b
=(λ+1,λ,-2)
a
b
=(1+λ,1,-2λ)

∵向量λ
a
-
b
a
b
共线,∴存在实数μ,使得λ
a
-
b
=μ(
a
b
)

即(λ+1,λ,-2)=μ(1+λ,1,-2λ)∴
λ+1=μ(λ+1)
λ=μ
-2=-2μλ

∴λ=1,或λ=-1.
点评:熟练掌握向量夹角公式、向量垂直于数量积的关系、向量共线定理等是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网