题目内容
(10分)过点A(8,6)引三条直线l1、l2、l3,它们的倾斜角之比为1∶2∶4,若直线l2的方程是y=x,求直线l1、l3的方程
(本小题满分10分)计算下列各式:
(1);
(2).
(本小题满分12分)如图,四棱锥S—ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD
(1)求证:SO⊥平面ABCD;
(2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A—PCD的体积.
已知函数f(x)=x2+2ax+2,x∈[-5,5].
(1)当a=-1时,求函数f(x)的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数
(本小题满分10分)关于某设备的使用年限x和所支出的维修费用(万元),有统计数据,由资料知对呈线性相关,并且统计的五组数据的平均值分别为,,若用五组数据得到的线性回归方程去估计,使用8年的维修费用比使用7年的维修费用多1.1万元.
(1)求回归直线方程;
(2)估计使用年限为10年时,维修费用是多少?
如图,在四棱锥中,底面为矩形,平面,为的中点.
(1)求证:平面;
(2)设求三棱锥的体积。
如图,在平行四边形中,对角线与交于点,,则_____
由点向圆引两条切线,,,是切点,则的最小值是( )
A. B. C. D.
已知上的可导函数的图象如图所示,则不等式的解集为( )
A. B.
C. D.