题目内容
设函数y=f(x+1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)是减函数,且图象过点(1,0),则不等式(x-1)f(x)≤0的解集为( )
| A.(-∞,0)∪[2,+∞) | B.(-2,0)∪[2,+∞) | C.(-∞,0]∪(1,2] | D.(-∞,0)∪(1,2) |
∵函数y=f(x+1)是定义在(-∞,0)∪(0,+∞)上的偶函数,
∴函数f(x)的图象关于直线x=1对称,
又∵函数y=f(x+1)在区间(-∞,0)是减函数,
∴函数f(x)在区间(-∞,1)是减函数,在区间(1,+∞)是增函数,
又f(2)=0
∴f(0)=0
∴当x>1时,f(x)≤0=f(2)
∴1<x≤2
当x<1时,f(x)≥0=f(0)
∴x≤0,∴x≤0.
综上x≤0或1<x≤2.
故选C.
∴函数f(x)的图象关于直线x=1对称,
又∵函数y=f(x+1)在区间(-∞,0)是减函数,
∴函数f(x)在区间(-∞,1)是减函数,在区间(1,+∞)是增函数,
又f(2)=0
∴f(0)=0
∴当x>1时,f(x)≤0=f(2)
∴1<x≤2
当x<1时,f(x)≥0=f(0)
∴x≤0,∴x≤0.
综上x≤0或1<x≤2.
故选C.
练习册系列答案
相关题目