题目内容

若角α的终边经过点P(1,-2),则cos2α-2sinαcosα的值为
1
1
分析:由角α的终边经过点P(1,-2),利用任意角的三角函数定义求出sinα与cosα的值,代入原式计算即可求出值.
解答:解:∵角α的终边经过点P(1,-2),
∴sinα=-
2
5
,cosα=
1
5

则原式=
1
5
-2×(-
2
5
)×
1
5
=
1
5
+
4
5
=1.
故答案为:1
点评:此题考查了同角三角函数间的基本关系,以及任意角的三角函数定义,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网