ÌâÄ¿ÄÚÈÝ
18£®| Ö¸Êý | ¼¶±ð | Àà±ð | »§Íâ»î¶¯½¨Òé |
| 0¡«50 | ¢ñ | ÓÅ | ¿ÉÕý³£»î¶¯ |
| 51¡«100 | ¢ò | Á¼ | |
| 101¡«150 | ¢ó | Çá΢ÎÛȾ | Ò׸ÐÈËȺ֢״ÓÐÇá¶È¼Ó¾ç£¬½¡¿µÈËȺ³öÏִ̼¤Ö¢×´£¬ÐÄÔಡºÍºôÎüϵͳ¼²²¡»¼ÕßÓ¦¼õÉÙÌå»ýÏûºÄºÍ»§Íâ»î¶¯£® |
| 151¡«200 | Çá¶ÈÎÛȾ | ||
| 201¡«250 | ¢ô | ÖжÈÎÛȾ | ÐÄÔಡºÍ·Î²¡»¼ÕßÖ¢×´ÏÔÖø¼Ó¾ç£¬Ô˶¯ÄÍÊÜÁ¦½µµÍ£¬½¡¿µÈËȺÖÐÆÕ±é³öÏÖÖ¢×´£¬ÀÏÄêÈ˺ÍÐÄÔಡ¡¢·Î²¡»¼ÕßÓ¦¼õÉÙÌåÁ¦»î¶¯£® |
| 251¡«300 | ÖжÈÖØÎÛȾ | ||
| 301¡«500 | ¢õ | ÖØÎÛȾ | ½¡¿µÈËÔ˶¯ÄÍÊÜÁ¦½µµÍ£¬ÓÉÃ÷ÏÔÇ¿ÁÒÖ¢×´£¬Ìáǰ³öÏÖijЩ¼²²¡£¬ÀÏÄêÈ˺Ͳ¡ÈËÓ¦µ±ÁôÔÚÊÒÄÚ£¬±ÜÃâÌåÁ¦ÏûºÄ£¬Ò»°ãÈËȺӦ¾¡Á¿¼õÉÙ»§Íâ»î¶¯£® |
£¨1£©ÇóÕâ60ÌìÖÐÊôÇá¶ÈÎÛȾµÄÌìÊý£»
£¨2£©ÇóÕâ60Ìì¿ÕÆøÖÊÁ¿Ö¸ÊýµÄƽ¾ùÖµ£»
£¨3£©Ò»°ãµØ£¬µ±¿ÕÆøÖÊÁ¿ÎªÇá¶ÈÎÛȾ»òÇá¶ÈÎÛȾÒÔÉÏʱ²Å»á³öÏÖÎíö²ÌìÆø£¬ÇÒ´Ëʱ³öÏÖÎíö²ÌìÆøµÄ¸ÅÂÊΪ$\frac{5}{8}$£¬Çë¸ù¾Ýͳ¼ÆÊý¾Ý£¬ÇóÔÚδÀ´2ÌìÀÉÛÑôÊÐÇ¡ÓÐ1Ìì³öÏÖÎíö²ÌìÆøµÄ¸ÅÂÊ£®
·ÖÎö £¨1£©£¨2£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼£¬¼ÆËã¼´¿É£»
£¨3£©Çó³ö¿ÕÆøÖÊÁ¿ÎªÇá¶ÈÎÛȾ»òÇá¶ÈÎÛȾÒÔÉϵĸÅÂÊP1£¬µÃµ½³öÏÖÎíö²¸ÅÂÊ£¬´Ó¶øÇó³öÉÛÑôÊÐÇ¡ÓÐ1Ìì³öÏÖÎíö²ÌìÆøµÄ¸ÅÂÊ£®
½â´ð ½â£º£¨1£©ÒÀÌâÒâÖª£¬Çá¶ÈÎÛȾ¼´¿ÕÆøÖÊÁ¿Ö¸ÊýÔÚ151-200Ö®¼ä£¬¹²ÓÐ0.003¡Á50¡Á60=9Ì죮
£¨2£©ÓÉÖ±·½Í¼Öª60Ìì¿ÕÆøÖÊÁ¿Ö¸ÊýµÄƽ¾ùֵΪ$\overline x=25¡Á0.1+75¡Á0.4+125¡Á0.3+175¡Á0.15+225¡Á0.05=107.5$£®
£¨3£©¿ÕÆøÖÊÁ¿ÎªÇá¶ÈÎÛȾ»òÇá¶ÈÎÛȾÒÔÉϵĸÅÂÊP1=0.15+0.05=0.2£¬
¡à³öÏÖÎíö²¸ÅÂÊΪ$0.2¡Á\frac{5}{8}=\frac{1}{8}$£¬
¡àδÀ´2ÌìÀǡÓÐ1ÌìΪÎíö²ÌìÆøµÄ¸ÅÂÊ$P=C_2^1¡Á{£¨\frac{1}{8}£©^1}¡Á{£¨1-\frac{1}{8}£©^1}=\frac{7}{32}$£®
µãÆÀ ±¾Ì⿼²éÁËÆµÂÊ·Ö²¼Ö±·½Í¼µÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÏ໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʵļÆËãÎÊÌ⣬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®
ÈçͼËùʾ£¬ÒõÓ°²¿·ÖÊÇÓÉËĸöÈ«µÈµÄÖ±½ÇÈý½ÇÐÎ×é³ÉµÄͼÐΣ¬ÔÚ´óÕý·½ÐÎÄÚËæ»úȡһµã£¬ÕâÒ»µãÂäÔÚСÕý·½ÐεĸÅÂÊΪ$\frac{1}{5}$£¬ÉèÖ±½ÇÈý½ÇÐÎÖнϴóµÄÈñ½ÇΪ¦È£¬Ôòsin¦È=£¨¡¡¡¡£©
| A£® | $\frac{{\sqrt{5}}}{5}$ | B£® | $\frac{{2\sqrt{5}}}{5}$ | C£® | $\frac{{\sqrt{3}}}{3}$ | D£® | $\frac{{\sqrt{2}}}{2}$ |
3£®ÒÑÖª¼¯ºÏA={x|x2-2x£¼0}£¬$B=\left\{{x\left|{-\sqrt{3}£¼x£¼\sqrt{3}}\right.}\right\}$£¬ÔòA¡ÉB=£¨¡¡¡¡£©
| A£® | $\left\{{x\left|{-\sqrt{3}£¼x£¼0}\right.}\right\}$ | B£® | $\left\{{x\left|{-\sqrt{3}£¼x£¼2}\right.}\right\}$ | C£® | $\left\{{x\left|{0£¼x£¼\sqrt{3}}\right.}\right\}$ | D£® | {x|-2£¼x£¼0} |
1£®Éèx£¾0£¬y£¾0£¬Èô²»µÈʽ2log${\;}_{\frac{1}{2}}$[£¨a-1£©x+ay]¡Ü1+log${\;}_{\frac{1}{2}}$£¨xy£©ºã³ÉÁ¢£¬Ôò4aµÄ×îСֵΪ£¨¡¡¡¡£©
| A£® | $\frac{\sqrt{6}+2}{4}$ | B£® | $\frac{\sqrt{6}+\sqrt{2}}{4}$ | C£® | $\sqrt{6}$+2 | D£® | $\sqrt{6}$+$\sqrt{2}$ |