题目内容
已知递增的等比数列{an}满足:a2+a3+a4=28,a3+2是a2与a4的等差中项.
(1)求数列{an}的通项公式;
(2)假设bn=
,其数列{bn}的前n项和Tn,并解不等式Tn<
.
(1)求数列{an}的通项公式;
(2)假设bn=
| an |
| (an+1)(an+1+1) |
| 127 |
| 390 |
(1)∵递增的等比数列{an}满足:a2+a3+a4=28,a3+2是a2与a4的等差中项,
∴2(a3+2)=a2+a4,a3=8,a2+a4=80,
∴
,
解得a1=2,q=2,或a1=32,q=
(舍),
∴an=2n.
(2)bn=
=
=
-
,
∴Tn=
-
+
-
+…+
-
+
-
=
-
=
-
,
∵Tn<
,
∴
-
<
,∴2n+1<129,解得n≤6,
∴不等式Tn<
的解集为{1,2,3,4,5,6}.
∴2(a3+2)=a2+a4,a3=8,a2+a4=80,
∴
|
解得a1=2,q=2,或a1=32,q=
| 1 |
| 2 |
∴an=2n.
(2)bn=
| an |
| (an+1)(an+1+1) |
=
| 2n |
| (2n+1)(2n+1+1) |
=
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
∴Tn=
| 1 |
| 2+1 |
| 1 |
| 22+1 |
| 1 |
| 22+1 |
| 1 |
| 23-1 |
| 1 |
| 2n-1+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
=
| 1 |
| 2+1 |
| 1 |
| 2n+1+1 |
=
| 1 |
| 3 |
| 1 |
| 2n+1+1 |
∵Tn<
| 127 |
| 390 |
∴
| 1 |
| 3 |
| 1 |
| 2n+1+1 |
| 127 |
| 130 |
∴不等式Tn<
| 127 |
| 390 |
练习册系列答案
相关题目