题目内容


x≥1,y≥1,证明xyxy


)由于x≥1,y≥1,所以

xyxyxy(xy)+1≤yx+(xy)2.

将上式中的右式减左式,得

[yx+(xy)2]-[xy(xy)+1]=[(xy)2-1]-[xy(xy)-(xy)]=(xy+1)(xy-1)-(xy)(xy-1)=(xy-1)(xyxy+1)=(xy-1)(x-1)(y-1).

既然x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网