题目内容
设x≥1,y≥1,证明x+y+
≤
+
+xy;
)由于x≥1,y≥1,所以
x+y+
≤
+
+xy⇔xy(x+y)+1≤y+x+(xy)2.
将上式中的右式减左式,得
[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).
既然x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立
练习册系列答案
相关题目