题目内容
等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,公比为q,且b2+S2=12,{bn}的公比q=| S2 |
| S1 |
(1)求an与bn.
(2)证明:
| 1 |
| 3 |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 2 |
| 3 |
分析:本题考查的是数列与不等式的综合问题.在解答时:
(1)利用b2+S2=12和数列{bn}的公比q=
.即可列出方程组求的q、a2的值,进而获得问题的解答;
(2)首先利用等差数列的前n项和公式计算出数列的前n项和,然后利用放缩法即可获得问题的解答.
(1)利用b2+S2=12和数列{bn}的公比q=
| S2 |
| S1 |
(2)首先利用等差数列的前n项和公式计算出数列的前n项和,然后利用放缩法即可获得问题的解答.
解答:解:(I)由已知可得
.
解得,q=3或q=-4(舍去),a2=6
∴an=3+(n-1)3=3n
∴bn=3n-1
(2)证明:∵Sn=
∴
=
=
(
-
)
∴
+
+…+
=
(1-
+
-
+
-
+…+
-
)
=
(1-
)
∵n≥1∴0<
≤
∴
≤
(1-
)<
故
≤
+
+…+
<
.
|
解得,q=3或q=-4(舍去),a2=6
∴an=3+(n-1)3=3n
∴bn=3n-1
(2)证明:∵Sn=
| n(3+3n) |
| 2 |
| 1 |
| Sn |
| 2 |
| n(3+3n) |
| 2 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
=
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 2 |
| 3 |
| 1 |
| n+1 |
∵n≥1∴0<
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| n+1 |
| 2 |
| 3 |
故
| 1 |
| 3 |
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 2 |
| 3 |
点评:本题考查的是数列通项的求法与不等式的综合问题.在解答的过程当中充分体现了解方程的思想、前n项和公式以及放缩法等知识.值得同学们体会反思.
练习册系列答案
相关题目