题目内容
已知点A(1,0),B(0,1),C(2,sinθ)
(1)若|
|=|
|,求sinθ的值
(2)若(
+
)•
=
,其中O为坐标原点,且0<θ<π,求tanθ的值.
(1)若|
| AC |
| BC |
(2)若(
| OA |
| OB |
| OC |
| 13 |
| 5 |
(1)由A(1,0),B(0,1),C(2,sinθ),得到
=(1,sinθ),
=(2,sinθ-1),
因为|
|=|
|,所以
=
,
两边平方得:1+sin2θ=4+sin2θ-2sinθ+1,解得sinθ=
;
(2)
=(1,0),
=(0,1),
=(2,sinθ),代入(
+
)•
=
中,
化简得:2+sinθ=
,解得:sinθ=
,又0<θ<π,所以cosθ=-
,
则tanθ=-
.
| AC |
| BC |
因为|
| AC |
| BC |
| 1+sin2θ |
| 4+(sinθ-1)2 |
两边平方得:1+sin2θ=4+sin2θ-2sinθ+1,解得sinθ=
| 1 |
| 2 |
(2)
| OA |
| OB |
| OC |
| OA |
| OB |
| OC |
| 13 |
| 5 |
化简得:2+sinθ=
| 13 |
| 5 |
| 3 |
| 5 |
| 4 |
| 5 |
则tanθ=-
| 3 |
| 4 |
练习册系列答案
相关题目