题目内容
设数列{an}、{bn}满足a1=4,a2=
,an+1=
,bn=
.
(1)证明:an>2,0<bn<2(n∈N*);
(2)设cn=log3
,求数列{cn}的通项公式;
(3)设数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,数列{anbn}的前n项和为{Pn},求证:Sn+Tn<Pn+
.(n≥2)
| 5 |
| 2 |
| an+bn |
| 2 |
| 2anbn |
| an+bn |
(1)证明:an>2,0<bn<2(n∈N*);
(2)设cn=log3
| an+2 |
| an-2 |
(3)设数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,数列{anbn}的前n项和为{Pn},求证:Sn+Tn<Pn+
| 8 |
| 3 |
分析:(1)an+1=
,bn+1=
,两式相乘得anbn=an+1bn+1,由此能够证明an>2,0<bn<2(n∈N*).
(2)由cn=log3
,得cn+1=log3
=2log3(
),由此能够求出数列{cn}的通项公式.
(3)由cn=2n-1,知an=2•
=2(1+
)=2+
,令dn=
,数列{dn}的前n项和为Dn,只要证明Dn≤
,(n≥2),就能得到Sn+Tn<Pn+
.(n≥2)
| an+bn |
| 2 |
| 2anbn |
| an+bn |
(2)由cn=log3
| an+2 |
| an-2 |
| an+1+2 |
| an+1-2 |
| an+2 |
| an-2 |
(3)由cn=2n-1,知an=2•
| 32n-1+1 |
| 32n-1-1 |
| 2 |
| 32n-1-1 |
| 4 |
| 32n-1-1 |
| 4 |
| 32n-1-1 |
| 8 |
| 3 |
| 8 |
| 3 |
解答:(本题满分16分)
(1)∵an+1=
,bn+1=
,
两式相乘得anbn=an+1bn+1,
∴{anbn}为常数列,∴anbn=a1b1=4;(2分)
∴bn=
,
∴an+1=
(an+
)>2,
∴0<bn<2;
(若an=2,则an+1=2,从而可得{an}为常数列与a1=4矛盾);(4分)
(2)∵cn=log3
,
∴cn+1=log3
=log3
=log3(
)2
=2log3(
),
∴
=
=2,
∴{cn}为等比数列,
∵c1=1,∴cn=2n-1.(8分)
(3)由cn=2n-1,知an=2•
=2(1+
)=2+
,
令dn=
,数列{dn}的前n项和为Dn,很显然只要证明Dn≤
,(n≥2),
∵n≥2,∴32n-1+1≥4.
∵dn=
=
=
≤
dn-1,
∴dn=
≤
dn-1≤(
)2dn-2≤…≤(
)n-2d2,
所以Dn=d1+(d2+d3+…+dn)≤d1+[1+
+(
)2+…+(
)n-2]d2
≤2+
=2+
[1-(
)n-2]=
-
(
)n-2<
,
所以Sn<2n+
.(14分)
又anbn=4,bn<2,故pn=4n,且Tn<2n,
所以Sn+Tn<2n+
+2n=4n+
=pn+
,n≥2.(16分)
(1)∵an+1=
| an+bn |
| 2 |
| 2anbn |
| an+bn |
两式相乘得anbn=an+1bn+1,
∴{anbn}为常数列,∴anbn=a1b1=4;(2分)
∴bn=
| 4 |
| an |
∴an+1=
| 1 |
| 2 |
| 4 |
| an |
∴0<bn<2;
(若an=2,则an+1=2,从而可得{an}为常数列与a1=4矛盾);(4分)
(2)∵cn=log3
| an+2 |
| an-2 |
∴cn+1=log3
| an+1+2 |
| an+1-2 |
=log3
| ||||
|
=log3(
| an+2 |
| an-2 |
=2log3(
| an+2 |
| an-2 |
∴
| cn+1 |
| Cn |
2log3(
| ||
log3(
|
∴{cn}为等比数列,
∵c1=1,∴cn=2n-1.(8分)
(3)由cn=2n-1,知an=2•
| 32n-1+1 |
| 32n-1-1 |
| 2 |
| 32n-1-1 |
| 4 |
| 32n-1-1 |
令dn=
| 4 |
| 32n-1-1 |
| 8 |
| 3 |
∵n≥2,∴32n-1+1≥4.
∵dn=
| 4 |
| 32n-1-1 |
| 4 |
| (32n-1)2-1 |
| 4 |
| (32n-x+1)(32n-x-1) |
| 1 |
| 4 |
∴dn=
| 4 |
| (32n-1+1)(32n-1) |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
所以Dn=d1+(d2+d3+…+dn)≤d1+[1+
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
≤2+
| ||||
1-
|
| 2 |
| 3 |
| 1 |
| 4 |
| 8 |
| 3 |
| 2 |
| 3 |
| 1 |
| 4 |
| 8 |
| 3 |
所以Sn<2n+
| 8 |
| 3 |
又anbn=4,bn<2,故pn=4n,且Tn<2n,
所以Sn+Tn<2n+
| 8 |
| 3 |
| 8 |
| 3 |
| 8 |
| 3 |
点评:本题考查不等式的证明和数列的通项公式的求法,综合性强,难度大,是高考重点,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目