题目内容

已知数列{an},a1=3,an+1=4an-3
(Ⅰ)设bn=1og2(an-1),求数列{bn}的前n项和Sn
(Ⅱ)在(Ⅰ)的条件下,求证:
1
S1
+
1
S2
+…+
1
Sn
n
n+1
(Ⅰ)∵an+1=4an-3,∴an+1-1=4(an-1)
∵a1=3,∴a1-1=2,
∴{an-1}是以2为首项,4为公比的等比数列
∴an-1=2×4n-1=22n-1
∵bn=1og2(an-1),∴bn=2n-1,
∴数列{bn}是以1为首项,2为公差的等差数列
∴Sn=
n(1+2n-1)
2
=n2
(Ⅱ)证明:
1
S1
+
1
S2
+…+
1
Sn
=
1
12
+
1
22
+…+
1
n2
1
1×2
+
1
2×3
+…+
1
n(n+1)

=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1

1
S1
+
1
S2
+…+
1
Sn
n
n+1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网