题目内容
已知数列{an},a1=3,an+1=4an-3
(Ⅰ)设bn=1og2(an-1),求数列{bn}的前n项和Sn
(Ⅱ)在(Ⅰ)的条件下,求证:
+
+…+
>
.
(Ⅰ)设bn=1og2(an-1),求数列{bn}的前n项和Sn
(Ⅱ)在(Ⅰ)的条件下,求证:
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| n |
| n+1 |
(Ⅰ)∵an+1=4an-3,∴an+1-1=4(an-1)
∵a1=3,∴a1-1=2,
∴{an-1}是以2为首项,4为公比的等比数列
∴an-1=2×4n-1=22n-1,
∵bn=1og2(an-1),∴bn=2n-1,
∴数列{bn}是以1为首项,2为公差的等差数列
∴Sn=
=n2;
(Ⅱ)证明:
+
+…+
=
+
+…+
>
+
+…+
=1-
+
-
+…+
-
=1-
=
∴
+
+…+
>
.
∵a1=3,∴a1-1=2,
∴{an-1}是以2为首项,4为公比的等比数列
∴an-1=2×4n-1=22n-1,
∵bn=1og2(an-1),∴bn=2n-1,
∴数列{bn}是以1为首项,2为公差的等差数列
∴Sn=
| n(1+2n-1) |
| 2 |
(Ⅱ)证明:
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n(n+1) |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
∴
| 1 |
| S1 |
| 1 |
| S2 |
| 1 |
| Sn |
| n |
| n+1 |
练习册系列答案
相关题目