题目内容
已知函数f(x)=
x3+ax2-bx(a,b∈R),若y=f(x)在区间[-1,2]上是单调减函数,则a+b的最小值为________.
分析:求导函数,利用y=f(x)在区间[-1,2]上是单调减函数,建立不等式,将a+b用条件线性表示,即可求得a+b的最小值.
解答:求导f′(x)=x2+2ax-b,
若y=f(x)在区间[-1,2]上是单调减函数,则f′(-1)=1-2a-b≤0,f′(2)=4+4a-b≤0
∴2a+b≥1,4a-b≤-4
令a+b=m(2a+b)+n(4a-b),则
∴m=
∴a+b=
∵2a+b≥1,4a-b≤-4
∴a+b≥
∴a+b的最小值为
故答案为:
点评:本题考查导数知识的运用,考查函数的单调性,考查求代数式的值,解题的关键是求导,确立不等关系.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|