题目内容

(09年江苏模拟) 如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,

G是CC1上的动点。

(Ⅰ)求证:平面ADG⊥平面CDD1C1

(Ⅱ)判断B1C1与平面ADG的位置关系,并给出证明;

解析:(Ⅰ)∵ ABCD-A1B1C1D1是长方体,且AB=AD

        ∴平面

        ∵平面    ∴平面ADG⊥平面CDD1C1

(Ⅱ)当点G与C1重合时,B1C1在平面ADG内,

当点G与C1不重合时,B1C1∥平面ADG

证明:∵ABCD-A1B1C1D1是长方体,

∴B1C1∥AD

若点G与C1重合, 平面ADG即B1C1与AD确定的平面,∴B1C1平面ADG

若点G与C1不重合

平面,平面且B1C1∥AD

∴B1C1∥平面ADG

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网