题目内容
【题目】为调查某校学生每周课外阅读的情况,采用分层抽样的方法,收集100位学生每周课外阅读时间的样本数据(单位:小时).根据这100个数据,制作出学生每周课外阅读时间的频率分布直方图(如图).
(1)估计这100名学生每周课外阅读的平均数
和样本方差
(同一组数据用该组区间的中点值作代表);
(2)由频率分布直方图知,该校学生每周课外阅读时间
近似服从正态分布
,其中
近似为样本平均数
,
近似为样本方差
.
![]()
①求
;
②若该校共有10000名学生,记每周课外阅读时间在区间
的人数为
,试求
.
参数数据:
,若
,
,
.
【答案】(1)
,
;(2)①
②
.
【解析】
(1)直接由频率分布直方图结合公式求得样本平均数和样本方差s2;
(2)①利用正态分布的对称性即可求得P(0.8<X≤8.3);
②由①知位于(0.8,8.3)的概率为0.8186,且ξ服从二项分布,由二项分布的期望公式得答案.
(1)
,
+
.
(2)①由(1)知X服从正态分布N(5.8,6.16),且σ=
≈2.5,
∴P(0.8<X≤8.3)
0.8186;
②依题意ξ服从二项分布,即
,
.
【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示
![]()
(1)由折线图可以看出,可用线性回归模型拟合月利润
(单位:百万元)与月份代码
之间的关系,求
关于
的线性回归方程,并预测该公司2019年3月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有
,
两种型号的新型材料可供选择,按规定每种新型材料最多可使用
个月,但新材料的不稳定性会导致材料损坏的年限不相同,现对
,
两种型号的新型材料对应的产品各
件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:
使用寿命 材料类型 |
|
|
|
| 总计 |
|
|
|
|
|
|
|
|
|
|
|
|
如果你是甲公司的负责人,你会选择采购哪款新型材料?
参考数据:
,
.参考公式:回归直线方程为
,其中
.