题目内容
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
}的前n项和为Sn,则S2012的值为( )
| 1 |
| f(n) |
A.
| B.
| C.
| D.
|
∵f(x)=x2-bx
∴f′(x)=2x-b
∴y=f(x)的图象在点A(1,f(1))处的切线斜率k=f′(1)=2-b
∵切线l与直线x+3y-1=0垂直,∴-b+2=3
∴b=-1,f(x)=x2+x
∴f(n)=n2+n=n(n+1)
∴
=
=
-
∴S2012=
+
+…+
=1-
+
-
+…+
-
=1-
=
故选A.
∴f′(x)=2x-b
∴y=f(x)的图象在点A(1,f(1))处的切线斜率k=f′(1)=2-b
∵切线l与直线x+3y-1=0垂直,∴-b+2=3
∴b=-1,f(x)=x2+x
∴f(n)=n2+n=n(n+1)
∴
| 1 |
| f(n) |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴S2012=
| 1 |
| f(1) |
| 1 |
| f(2) |
| 1 |
| f(2012) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2012 |
| 1 |
| 2013 |
| 1 |
| 2013 |
| 2012 |
| 2013 |
故选A.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|