题目内容

(重点中学学生做)若不等式ax2+ax+1>0对一切x∈R恒成立,则实数a的取值范围是   
【答案】分析:当a=0时,不等式即 1>0,显然满足对一切x∈R恒成立;当a>0时,应有△=a2-4a<0,解得 0<a<4;当a<0时,显然不满足条件,由此得到实数a的取值范围.
解答:解:∵不等式ax2+ax+1>0对一切x∈R恒成立,当a=0时,不等式即 1>0,显然满足对一切x∈R恒成立,
当a>0时,应有△=a2-4a<0,解得 0<a<4,
当a<0时,不等式ax2+ax+1>0不可能对一切x∈R恒成立,故排除.
综上,0≤a<4,即实数a的取值范围是[0,4).
故答案为[0,4).
点评:本题主要考查了一元二次方程的根的分布与系数的关系,以及函数的恒成立问题,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网