题目内容
(重点中学学生做)若不等式ax2+ax+1>0对一切x∈R恒成立,则实数a的取值范围是______.
∵不等式ax2+ax+1>0对一切x∈R恒成立,当a=0时,不等式即 1>0,显然满足对一切x∈R恒成立,
当a>0时,应有△=a2-4a<0,解得 0<a<4,
当a<0时,不等式ax2+ax+1>0不可能对一切x∈R恒成立,故排除.
综上,0≤a<4,即实数a的取值范围是[0,4).
故答案为[0,4).
当a>0时,应有△=a2-4a<0,解得 0<a<4,
当a<0时,不等式ax2+ax+1>0不可能对一切x∈R恒成立,故排除.
综上,0≤a<4,即实数a的取值范围是[0,4).
故答案为[0,4).
练习册系列答案
相关题目
某校在筹备校运会时欲制作会徽,准备向全校学生征集设计方案,某学生在设计中需要相同的三角形纸片7张,四边形纸片6张,五边形形纸片9张,而这些纸片必须从A、B两种规格的纸中裁取,具体如下:
| 三角形纸片(张) | 四边形纸片(张) | 五边形纸片(张) | |
| A型纸(每张可同时裁取) | 1 | 1 | 3 |
| B型纸(每张可同时裁取) | 2 | 1 | 1 |
(重点中学学生做)若每张A、B型纸的价格分别为4元与3元,试设计一种买纸方案,使该学生在制作时买纸的费用最省,并求此最省费用.
某校在筹备校运会时欲制作会徽,准备向全校学生征集设计方案,某学生在设计中需要相同的三角形纸片7张,四边形纸片6张,五边形形纸片9张,而这些纸片必须从A、B两种规格的纸中裁取,具体如下:
(普通中学学生做)若每张A、B型纸的价格分别为3元与4元,试设计一种买纸方案,使该学生在制作时买纸的费用最省,并求此最省费用.
(重点中学学生做)若每张A、B型纸的价格分别为4元与3元,试设计一种买纸方案,使该学生在制作时买纸的费用最省,并求此最省费用.
| 三角形纸片(张) | 四边形纸片(张) | 五边形纸片(张) | |
| A型纸(每张可同时裁取) | 1 | 1 | 3 |
| B型纸(每张可同时裁取) | 2 | 1 | 1 |
(重点中学学生做)若每张A、B型纸的价格分别为4元与3元,试设计一种买纸方案,使该学生在制作时买纸的费用最省,并求此最省费用.