题目内容

已知函数f(x)=x3+ax2+bx+3的单调递减区间为(-
1
3
,1)
,单调递增区间为(-∞,-
1
3
)
和(1,+∞).
(1)求f(x)的解析式;
(2)若t∈R,试讨论关于x的方程f(x)=2x2+8x+t的实数根的个数.
分析:(1)由题设得f'(x)=0的根为x=-
1
3
或x=1,由此求得a=b=-1;
(2)令g(x)=f(x)-(2x2+8x+t),利用导数求出函数g(x)的极大值与极小值,对参数t分类讨论,即可得到函数的零点个数亦即方程的根的个数.
解答:解:(1)f'(x)=3x2+2ax+b
由题设得f'(x)=0的根为x=-
1
3
或x=1
由此求得a=b=-1
故f(x)=x3-x2-x+3
(2)g(x)=f(x)-(2x2+8x+t)=x3-3x2-9x+3-t
令g'(x)=3x2-6x-9=0,得x=-1或x=3
x (-∞,-1) -1 (-1,3) 3 (3,+∞)
g'(x) + 0 - 0 +
g(x) 极大值 极小值
g(x)极大值=g(-1)=8-t,g(x)极小值=g(3)=-24-t
∴当8-t<0,即t>8时,原方程有一个实数根;
当8-t=0,即t=8时,原方程有两个实数根;
8-t>0
-24-t<0
即-24<t<8时,原方程有三个实数根;
当-24-t=0,即t=-24时,原方程有两个实数根;
当-24-t>0,即t<-24时,原方程有一个实数根.
综上,当t=-24或t=8时,原方程有两个实数根;
当t<-24或t>8时,原方程有两个实数根;
当-24<t<8时,原方程有三个实数根.
点评:考查利用导数研究函数的单调性和极值,以及一元二次方程根的存在性的判定,体现了数形结合的思想方法,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网