题目内容
已知向量a
,b
,且a⊥b.若
满足不等式
,则
的取值范围为
| A. | B. | C. | D. |
D
试题分析:根据平面向量的垂直的坐标运算法则,我们易根据已知中的条件构造出一个关于x,y,z的方程,即关于Z的目标函数,画了约束条件|x|+|y|≤1对应的平面区域,并求出各个角点的坐标,代入即可求出目标函数的最值,进而给出z的取值范围.根据题意,由于向量a
由图可知当x=0,y=1时,z取最大值3,当x=0,y=-1时,z取最小值-3,故z的取值范围为[-3,3],故答案为D
点评:本题考查的知识点是数量积判断两个平面向量的垂直关系,简单线性规划的应用,其中利用平面向量的垂直的坐标运算法则,求出目标函数的解析式是解答本题的关键
练习册系列答案
相关题目