题目内容
(1)已知tanθ=2,求
的值;
(2)已知若-
<x<0,
sin(x+
)=
,求sinx的值.
| 1+sin2θ |
| cos2θ |
(2)已知若-
| π |
| 2 |
| 2 |
| π |
| 4 |
| 1 |
| 5 |
分析:(1)把分子展开倍角公式,运用平方关系变为完全平方式,分母展开倍角的余弦,约分后分子分母同时除以
cosθ,化为切函数后代值运算;
(2)由已知求出cos(x+
),把x化为(x+
)-
,展开两角差的正弦即可得到答案.
cosθ,化为切函数后代值运算;
(2)由已知求出cos(x+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
解答:解:(1)∵tanθ=2,
∴
=
=
=
=
=
=-3;
(2)由
sin(x+
)=
,得sin(x+
)=
.
∵-
<x<0,∴-
<x+
<
,
则cos(x+
)=
=
=
.
∴sinx=sin[(x+
)-
]=sin(x+
)cos
-cos(x+
)sin
=
×
-
×
=-
.
∴
| 1+sin2θ |
| cos2θ |
| sin2θ+cos2θ+2sinθcosθ |
| cos2θ-sin2θ |
=
| (sinθ+cosθ)2 |
| (cosθ-sinθ)(cosθ+sinθ) |
| sinθ+cosθ |
| cosθ-sinθ |
| tanθ+1 |
| 1-tanθ |
| 2+1 |
| 1-2 |
(2)由
| 2 |
| π |
| 4 |
| 1 |
| 5 |
| π |
| 4 |
| ||
| 10 |
∵-
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
则cos(x+
| π |
| 4 |
1-sin2(x+
|
1-(
|
7
| ||
| 10 |
∴sinx=sin[(x+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| ||
| 10 |
| ||
| 2 |
7
| ||
| 10 |
| ||
| 2 |
| 3 |
| 5 |
点评:本题考查了二倍角的正弦,考查了两角差的三角函数,训练了配角思想方法,是中档题.
练习册系列答案
相关题目